

عنوان مقاله:

A Kinetic Investigation into the In Situ Combustion Reactions of Iranian Heavy Oil from Kuh-E-Mond Reservoir

محل انتشار:

فصلنامه علوم و فناوری نفت و گاز, دوره 6, شماره 4 (سال: 1396)

تعداد صفحات اصل مقاله: 15

نویسندگان:

Milad Karimian - Ph.D. Candidate, Department of Petroleum Engineering, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran- Iran Society of Young Researchers, Shahid Bahonar University of Kerman, Iran

Mahin Schaffie - Professor, Department of Petroleum Engineering, Shahid Bahonar University of Kerman, Iran

Mohammad Hassan Fazaelipoor - Professor, Process Department of Chemical Engineering, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran

خلاصه مقاله:

An efficient design of in situ combustion depends on accurate kinetic modeling of the crude oil oxidation. The kinetic triplet of the oxidation reactions of a heavy oil sample was investigated. Once the kinetic triplet is known, the kinetic equation would be deconvolved. The crude oil sample was obtained from Kuh-E-Mond reservoir, located in the southwest of Iran. The samples were analyzed using differential scanning calorimetry (DSC) at atmospheric pressure, in a temperature range of 297-973 K, and at four different heating rates. Three isoconversional kinetic models were used to obtain a variation of Arrhenius parameters during the course of the high temperature oxidation reaction. The activation energy (E α) and the pre-exponential factor (A) were obtained at different conversions. Having Arrhenius parameters, the conversion function, f(α), was estimated using an advanced master plot method. It was observed that f(α) follows the Avrami–Erofeev (An) model with n=3. Furthermore, the parameters of truncated Sestak–Berggren (SB) reaction model were obtained. SB fits fairly better than A3 to the experimental data. According to the results, a .change in the heating rate does not considerably vary the reaction model

کلمات کلیدی:

In Situ Combustion, DSC, Kinetic Triplet, Isoconversional Model, Reaction Model

لینک ثابت مقاله در پایگاه سیویلیکا:

https://civilica.com/doc/835425

