Publisher of Iranian Journals and Conference Proceedings

Please waite ..
Publisher of Iranian Journals and Conference Proceedings
Login |Register |Help |عضویت کتابخانه ها
Paper
Title

Imputation of parent-offspring trios and their effect on accuracy of genomic prediction using Bayesian method

Year: 1396
COI: JR_KLST-5-2_006
Language: EnglishView: 319
This Paper With 10 Page And PDF Format Ready To Download

Buy and Download

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این Paper را که دارای 10 صفحه است به صورت فایل PDF در اختیار داشته باشید.
آدرس ایمیل خود را در کادر زیر وارد نمایید:

Authors

M. Kamaei - Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran, Iran.
M. Honarvar - Department of Animal Science, Shahr Qods Branch, Islamic Azad University, Tehran, Iran.
M. Aminafshar - Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran, Iran.
R. Abdollahi-Arpanahi - Department of Animal Science, College of Abouraihan, University of Tehran, Tehran, Iran.

Abstract:

The objective of this study was to evaluate the imputation accuracy of parent-offspring trios under different scenarios. By using simulated datasets, the performance Bayesian LASSO in genomic prediction was also examined. The genome consisted of 5 chromosomes and each chromosome was set as 1 Morgan length. The number of SNPs per chromosome was 10000. One hundred QTLs were randomly distributed across chromosomes. Three low density SNP panels, containing 0.5k, 1k and 5k SNPs, were generated from the 10k panel. Six scenarios were evaluated, each containing two trios (dam, sire and offspring) and sire of each dam for parent-offspring pair data. These scenarios were compared from completely genotyped offspring to low-density genotyped and dams that were completely genotyped, low density genotyped and non-genotyped. It was assumed that the genotypes of the offspring’s sires were available. The Beagle 3.3.2 program was used for imputation of parent-offspring trios. The Bayesian LASSO were used to estimate the marker effects using the R package of BLR . The results showed that accuracy of both imputation and genomic evaluation was influenced by imputation errors. Imputation accuracy ranged from 0.67 to 0.96 for genotyped individuals. Genotype imputation accuracy increased with increasing marker density of low-density genotyping platform and with dams having high-density genotypes. Results showed that imputation accuracies decreased significantly (P < 0.05) when dam was non-genotyped and both of offspring were low-density genotyped. In case of factors affecting imputation accuracy, the imputation accuracy of SNPs with low MAF increased considerably when a dam was completely genotyped. Imputation of non-genotyped individuals can help to include valuable phenotypes for genome-wide association studies or for genomic prediction, especially when the non-genotyped individuals have genotyped offspring.

Keywords:

Paper COI Code

This Paper COI Code is JR_KLST-5-2_006. Also You can use the following address to link to this article. This link is permanent and is used as an article registration confirmation in the Civilica reference:

https://civilica.com/doc/862228/

How to Cite to This Paper:

If you want to refer to this Paper in your research work, you can simply use the following phrase in the resources section:
Kamaei, M. and Honarvar, M. and Aminafshar, M. and Abdollahi-Arpanahi, R.,1396,Imputation of parent-offspring trios and their effect on accuracy of genomic prediction using Bayesian method,https://civilica.com/doc/862228

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :

  • Boichard, D., Chung, H., Dassonneville, R., David, X., Eggen, A., ...
  • Bouwman, A.C., Hickey, J.M., Calus, M.P., Veerkamp, R.F., 2014. Imputation ...
  • Brøndum, R.F., Ma, P., Lund, M.S., Su, G., 2012. Short ...
  • Browning, B.L., Browning, S.R., 2009. A unified approach to genotype ...
  • Calus, M.P.L., Bouwman, A.C., Hickey, J.M., Veerkamp, R.F., Mulder, H.A., ...
  • Chen, L., Li, C., Sargolzaei, M., Schenkel, F., 2014. Impact ...
  • Chen, M.H., Huang, J., Chen, W.M., Larson, M.G., Fox, C.S., ...
  • De los Campos, G., Naya, H., Gianola, D., Crossa, J., ...
  • De los Campos, G., Pérez, P., 2010. BLR: Bayesian Linear ...
  • Erbe, M., Hayes, B.J., Matukumalli, L.K., Goswami, S., Bowman, P.J., ...
  • Hickey, J.M., Crossa, J., Babu, R., de losCampos, G., 2012. ...
  • Johnston, J., Kistemaker, G., Sullivan, P.G., 2011. Comparison of different ...
  • Lu, A.T., Cantor, R.M., 2014. Identifying rare-variant associations in parent-child ...
  • Meuwissen, T.H.E., Goddard, M.E., 2010. The use of family relationships ...
  • Meuwissen, T.H.E., Hayes, B.J., Goddard, M.E., 2001. Prediction of total ...
  • Molaei Moghbeli, S., Barazandeh, S., Vatankhah, M., Mohammadabadi, M., 2013. ...
  • Mulder, H.A., Calus, M.P.L., Druet, T., Schrooten, C., 2012. Imputation ...
  • Ober, U., Ayroles, J.F., Stone, E.A., Richards, S., Zhu, D., ...
  • Pimentel, E.C.G., Erbe, M., König, S., Simianer, H., 2011. Genome ...
  • Pimentel, E.C.G., Wensch-Dorendorf, M., Konig, S., Swalve, H.H., 2013. Enlarging ...
  • R Development Core Team. R: a language and environment for ...
  • Sargolzaei, M., Jansen, G.B., Schenkel, F.S., 2014. A new approach ...
  • Sargolzaei, M., Schenkel, F.S., Jansen, G.B., Schaeffer, L.R., 2008. Extent ...
  • Scheet, P., Stephens, M., 2006. A fast and flexible statistical ...
  • Silva, F.F., Rose, G., Guimaräes, S., Lopes, P.S., Campos, G., ...
  • Technow, A.F., 2015. Hypred, simulation of genomic data in applied ...
  • Villumsen, T.M., Janss, L., Lund, M.S., 2009. The importance of ...
  • Weigel, K.A., Van Tassell, C.P., O’Connell, J.R., VanRaden, P.M., Wiggans, ...
  • Wellmann, R., Preuß, S., Tholen, E., Heinkel, J., Wimmers, K., ...
  • Willer, C.J., Sanna, S., Jackson, A.U., Scuteri, A., Bonnycastle, L.L., ...
  • Williams, A.L., Patterson, N., Glessner, J., Hakonarson, H., Reich, D., ...

Research Info Management

Certificate | Report | من نویسنده این مقاله هستم

اطلاعات استنادی این Paper را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

Scientometrics

The specifications of the publisher center of this Paper are as follows:
Type of center: Azad University
Paper count: 38,373
In the scientometrics section of CIVILICA, you can see the scientific ranking of the Iranian academic and research centers based on the statistics of indexed articles.

Share this page

More information about COI

COI stands for "CIVILICA Object Identifier". COI is the unique code assigned to articles of Iranian conferences and journals when indexing on the CIVILICA citation database.

The COI is the national code of documents indexed in CIVILICA and is a unique and permanent code. it can always be cited and tracked and assumed as registration confirmation ID.

Support