Solving the Fixed Charge Transportation Problem by New Heuristic Approach
Publish Year: 1398
نوع سند: مقاله ژورنالی
زبان: English
View: 395
This Paper With 12 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JOIE-12-1_005
تاریخ نمایه سازی: 21 خرداد 1398
Abstract:
The fixed charge transportation problem (FCTP) is a deployment of the classical transportation problem in which a fixed cost is incurred, independent of the amount transported, along with a variable cost that is proportional to the amount shipped. Since the problem is considered as an NP-hard, the computational time grows exponentially as the size of the problem increases. In this paper, we propose a new heuristic along with well-known metaheuristic like Geneticalgorithm (GA), simulated annealing (SA) and recently developed one, Keshtel algorithm (KA) to solve the FCTP. Contrary to previous works, we develop a simple and strong heuristic according to the nature of the problem and compare the result with metaheuristics. In addition, since the researchers recently used the priority-based representation to encode the transportation graphs and achieved very good results, we consider this representation in metaheuristics and compare the results with the proposed heuristic. Furthermore, we apply the Taguchi experimental design method to set the proper values of algorithms in order to improve their performances. Finally, computational results of heuristic and metaheuristics with different encoding approaches, both in terms of the solution quality and computation time, are studied in different problem sizes.
Keywords:
Authors
Komeil Yousefi
Department of Industrial Engineering, Shomal University, Amol, Iran
Ahmad J. Afshari
Department of Industrial Engineering, Shomal University, Amol, Iran
Mostafa Hajiaghaei-Keshteli
Department of Industrial Engineering, University of Science and Technology of Mazandaran, Behshahr, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :