CIVILICA We Respect the Science
(ناشر تخصصی کنفرانسهای کشور / شماره مجوز انتشارات از وزارت فرهنگ و ارشاد اسلامی: ۸۹۷۱)

Stability and numerical approximation for Sivashinsky equation by eigenfunction expansion

عنوان مقاله: Stability and numerical approximation for Sivashinsky equation by eigenfunction expansion
شناسه ملی مقاله: ICNS04_024
منتشر شده در چهارمین کنفرانس بین المللی ریاضی و علوم کامپیوتر در سال 1398
مشخصات نویسندگان مقاله:

Mehdi Mesrizadeh - Department of Mathematics, Imam Khomeini International University, Qazvin, IRAN.
Kamal Shanazari - Department of Mathematics, University of Kurdistan, Sanandaj, IRAN.

خلاصه مقاله:
This paper aims to investigate the stability and numerical approximation of Sivashinsky equations. We can extend a stability theorem on the higher order elliptic equation such as biharmonic equation by the eigenfunction expansion. Because RBFs do not generally vanish on the boundary, they can not directly approximate a Dirichlet boundary problem by Galerkin method. An auxiliary parametrized technique is used to convert a Dirichlet boundary condition to a Robin one. We apply the Galerkin meshfreemethod based on radial basis functions to discrete the spatial variables and use a group presenting scheme for the time discretization. Some experimental results will be presented to show the performance of the proposed method.

کلمات کلیدی:
eigenvalue, eigenfunction, Sivashinsky equation, stability.

صفحه اختصاصی مقاله و دریافت فایل کامل: https://civilica.com/doc/883839/