CIVILICA We Respect the Science
(ناشر تخصصی کنفرانسهای کشور / شماره مجوز انتشارات از وزارت فرهنگ و ارشاد اسلامی: ۸۹۷۱)

کاربرد مدل شبکه عصبی موجک در تخمین شاخص بارش استاندارد

عنوان مقاله: کاربرد مدل شبکه عصبی موجک در تخمین شاخص بارش استاندارد
شناسه ملی مقاله: JR_WATER-7-4_007
منتشر شده در شماره 4 دوره 7 فصل در سال 1396
مشخصات نویسندگان مقاله:

حمیدرضا باباعلی - گروه مهندسی عمران، دانشگاه آزاد خرم آباد، خرم آباد، ایران.
رضا دهقانی - مهندسی منابع آب- دانشگاه تبریز

خلاصه مقاله:
خشکسالی یکی از پدیده های آب و هوایی است که در همه شرایط اقلیمی و در همه مناطق کره زمین به وقوع می پیوندد. پیش بینی خشکسالی نقش مهمی در طراحی و مدیریت منابع طبیعی، سیستم های منابع آب، تعیین نیاز آبی گیاه ایفا می نماید. بدین منظور در این پژوهش از داده های 4 ایستگاه باران سنجی نورآباد، بروجرد، الشتر و دورود واقع در استان لرستان، به بررسی خشکسالی با استفاده از شاخص بارش استاندارد SPI در مقیاس های زمانی 6 و 12 ماهه پرداخته شد. سپس، خشکسالی ها با مدل شبکه عصبی موجک ارزیابی گردید. نتایج این پژوهش نشان داد ایستگاه های بروجرد و دورود دارای طولانی ترین خشکسالی و ایستگاه نورآباد شدیدترین خشکسالی را دارا می باشد. همچنین نتایج حاصل از بررسی تعداد ماه های خشکسالی نشان داد  بیشترین ماههای خشکسالی در ایستگاه بروجرد رخ داده است. نتایج تخمین خشکسالی ها با مدل شبکه عصبی موجک نشان داد این مدل در برآورد شاخص خشکسالی ایستگاه دورود نسبت به سایر ایستگاه ها نتایج مطلوبی در هر دو مقیاس زمانی ارائه می نماید درمجموع نتایج نشان داد مدل شبکه عصبی موجک جهت تخمین خشکسالی در مقیاس زمانی طولانی مدت دقت بیشتری از خود نشان داده و استفاده از مدل شبکه عصبی موجک می تواند درزمینهٔ تخمین خشکسالی موثر باشد که در نوبه خود برای تسهیل توسعه و پیاده سازی استراتژی های مدیریتی جهت جلوگیری از ایجاد خشکسالی ها مفید است.

کلمات کلیدی:
بارش, خشکسالی, شاخص بارش استاندارد, شبکه عصبی موجک

صفحه اختصاصی مقاله و دریافت فایل کامل: https://civilica.com/doc/888582/