CIVILICA We Respect the Science
(ناشر تخصصی کنفرانسهای کشور / شماره مجوز انتشارات از وزارت فرهنگ و ارشاد اسلامی: ۸۹۷۱)

ON THE REFINEMENT OF THE UNIT AND UNITARY CAYLEY GRAPHS OF RINGS

عنوان مقاله: ON THE REFINEMENT OF THE UNIT AND UNITARY CAYLEY GRAPHS OF RINGS
شناسه ملی مقاله: JR_JAS-7-1_004
منتشر شده در شماره 1 دوره 7 فصل در سال 1398
مشخصات نویسندگان مقاله:

M. Rezagholibeigi - Department of Mathematical Sciences, Shahrekord University, P.O.Box ۱۱۵, Shahrekord, Iran.
A. R. Naghipour - Department of Mathematical Sciences, Shahrekord University, P.O.Box ۱۱۵, Shahrekord, Iran.

خلاصه مقاله:
Let $R$ be a ring (not necessarily commutative) with nonzero identity. We define $Gamma(R)$ to be the graph with vertex set $R$ in which two distinct vertices $x$ and $y$ are adjacent if and only if there exist unit elements $u,v$ of $R$ such that $x+uyv$ is a unit of $R$. In this paper, basic properties of $Gamma(R)$ are studied. We investigate connectivity and the girth of $Gamma(R)$, where $R$ is a left Artinian ring. We also determine when the graph $Gamma(R)$ is a cycle graph. We prove that if $Gamma(R)congGamma(M_{n}(F))$ then $Rcong M_{n}(F)$, where $R$ is a ring and $F$ is a finite field. We show that if $R$ is a finite commutative semisimple ring and $S$ is a commutative ring such that $Gamma(R)congGamma(S)$, then $Rcong S$. Finally, we obtain the spectrum of $Gamma(R)$, where $R$ is a finite commutative ring.

کلمات کلیدی:
Rings, Matrix rings, Jacobson radical, Unit graphs, Unitary Cayley graphs

صفحه اختصاصی مقاله و دریافت فایل کامل: https://civilica.com/doc/893170/