Nanofibrillated chitosan/polycaprolactone bionanocomposite scaffold with improved tensile strength and cellular behavior

Publish Year: 1397
نوع سند: مقاله ژورنالی
زبان: English
View: 300

This Paper With 13 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_NAMJ-5-2_004

تاریخ نمایه سازی: 18 تیر 1398

Abstract:

Objective(s): Fabrication of scaffolds with improved mechanical properties and favorable cellular compatibility is crucial for many tissue engineering applications. This study was aimed to improve mechanical and biological properties of polycaprolactone (PCL), which is a common biocompatible and biodegradable synthetic polymer in tissue engineering. Nanofibrillated chitosan (NC) was used as a natural nanofiller to produced PCL nanobiocomposite scaffold with both enhanced mechanical properties and appropriate biological properties. Materials and Methods: Surface morphology and orientation of chitosan nanofibrils was investigated via atomic force microscopy (AFM). PCL/NC suspension solutions with various content of NC were prepared using dimethylformamide as a dipolar solvent to obtain homogenous solutions. The scaffolds were produced through a solvent casting procedure at room temperature. The prepared scaffolds was characterized using scanning electron microscopy (SEM), attenuated total reflection- fourier transform infrared (ATR-IR) spectroscopy, X-Ray diffraction (XRD), uniaxial mechanical testing, contact angle (CA) measurements and swelling and weight loss analysis. In vitro studies were also exceeded to evaluate the cellular compatibility of the prepared scaffolds. Results: The average diameter of chitosan nanofibrils was measured 88±10 nm. The existence of NC in nanocomposite was proven by ATR-FTIR and XRD results. Interestingly, incorporation of 10% of NC into PCL, improved the tensile strength of scaffolds from 2.7 to 6.5 MPa while reduced the elasticity. What is more, water contact angel of the membranes was decreased from 133° to 88˚ which imply more surface wettability of nanocomposite scaffolds in comparison to PCL. Furthermore, the swelling ratio and weight loss rate of bionanocomposites were increased 30% and 2.5%, respectively. MTT biocompatibility assay and cell adhesion test demonstrated superior cellular behavior of the fibroblasts on nanocomposite scaffolds in comparison to pure PCL scaffold.Conclusion: The acquired results expressed that the PCL/NC bionanocomposite can be a reliable candidate for tissue engineering applications.

Authors

Milad Fadaie

Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran

Esmaeil Mirzaei

Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Lanza R, Langer R, Vacanti JP. Principles of Tissue Engineering ...
  • Armentano I, Dottori M, Fortunati E, Mattioli S, Kenny JM. ...
  • Martina M, Hutmacher DW. Biodegradable polymers applied in tissue engineering ...
  • Faghihi F, Mirzaei E, Sarveazad A, Ai J, Ebrahimi Barough ...
  • Asvar Z, Mirzaei E, Azarpira N, Geramizadeh B, Fadaie M. ...
  • Abedalwafa M, Wang F, Wang L, Li C. Biodegradable poly-epsilon-caprolactone ...
  • Kumar MNR. A review of chitin and chitosan applications. React ...
  • Ravi Kumar MNV. A review of chitin and chitosan applications. ...
  • Yu L, Dean K, Li L. Polymer blends and composites ...
  • Hayes M, Carney B, Slater J, Brück W. Mining marine ...
  • Kaur S, Dhillon GS. The versatile biopolymer chitosan: potential sources, ...
  • Chatelet C, Damour O, Domard A. Influence of the degree ...
  • Rinaudo M. Chitin and chitosan: properties and applications. Prog Polym ...
  • Siqueira G, Bras J, Follain N, Belbekhouche S, Marais S, ...
  • Oksman K, Mathew AP, Bondeson D, Kvien I. Manufacturing process ...
  • Saba N, Tahir PM, Jawaid M. A review on potentiality ...
  • Siqueira G, Bras J, Dufresne A. Cellulosic bionanocomposites: a review ...
  • Liu M, Zheng H, Chen J, Li S, Huang J, ...
  • Zhu J, Wang Y, Liu J, Zhang Y. Facile one-pot ...
  • Yang Y, Xie Y, Pang L, Li M, Song X, ...
  • Mi H-Y, Jing X, Peng J, Salick MR, Peng X-F, ...
  • Durango A, Soares N, Andrade N. Microbiological evaluation of an ...
  • Harrison BS, Atala A. Carbon nanotube applications for tissue engineering. ...
  • Khalil HPSA, Davoudpour Y, Aprilia NAS, Mustapha A, Hossain S, ...
  • Darder M, Aranda P, Ruiz‐Hitzky E. Bionanocomposites: a new concept ...
  • Biswas A, Bayer IS, Zhao H, Wang T, Watanabe F, ...
  • Siqueira G, Bras J, Dufresne A. Cellulose whiskers versus microfibrils: ...
  • Chen B, Sun K, Ren T. Mechanical and viscoelastic properties ...
  • Cherian BM, Leão AL, de Souza SF, Costa LMM, de ...
  • Lin N, Chen G, Huang J, Dufresne A, Chang PR. ...
  • Juntaro J, Ummartyotin S, Sain M, Manuspiya H. Bacterial cellulose ...
  • Xiang C, Taylor AG, Hinestroza JP, Frey MW. Controlled release ...
  • Ji Y-l, Wolfe PS, Rodriguez IA, Bowlin GL. Preparation of ...
  • Fujisawa S, Saito T, Kimura S, Iwata T, Isogai A. ...
  • Kiziltas A, Nazari B, Kiziltas EE, Gardner DJ, Han Y, ...
  • Gomes S, Rodrigues G, Martins G, Roberto M, Mafra M, ...
  • Ghorbani FM, Kaffashi B, Shokrollahi P, Seyedjafari E, Ardeshirylajimi A. ...
  • Cao X, Dong H, Li CM. New nanocomposite materials reinforced ...
  • Sarasam A, Madihally SV. Characterization of chitosan–polycaprolactone blends for tissue ...
  • Liu M, Dai L, Shi H, Xiong S, Zhou C. ...
  • Venkatesan J, Qian Z-J, Ryu B, Kumar NA, Kim S-K. ...
  • Ikeda R, Fujioka H, Nagura I, Kokubu T, Toyokawa N, ...
  • Surucu S, Sasmazel HT. Development of core-shell coaxially electrospun composite ...
  • Van der Schueren L, Steyaert I, De Schoenmaker B, De ...
  • Bras J, Hassan ML, Bruzesse C, Hassan EA, El-Wakil NA, ...
  • Raucci M, D’Antò V, Guarino V, Sardella E, Zeppetelli S, ...
  • Fabbri P, Bondioli F, Messori M, Bartoli C, Dinucci D, ...
  • Ghaffari A, Navaee K, Oskoui M, Bayati K, Rafiee-Tehrani M. ...
  • Wan Y, Wu H, Yu A, Wen D. Biodegradable polylactide/chitosan ...
  • Roohani-Esfahani S, Nouri-Khorasani S, Lu Z, Appleyard R, Zreiqat H. ...
  • Bolaina-Lorenzo E, Martínez-Ramos C, Monleón-Pradas M, Herrera-Kao W, Cauich-Rodríguez JV, ...
  • Liu H, Liu W, Luo B, Wen W, Liu M, ...
  • Sailema-Palate GP, Vidaurre A, Campillo-Fernández A, Castilla-Cortázar I. A comparative ...
  • Bikiaris D, Panayiotou C. LDPE/starch blends compatibilized with PE‐g‐MA copolymers. ...
  • Wu C-S. A comparison of the structure, thermal properties, and ...
  • Díaz E, Sandonis I, Valle MB. In vitro degradation of ...
  • Woodruff MA, Hutmacher DW. The return of a forgotten polymer—polycaprolactone ...
  • Liu H, Leonas KK. Weight loss and morphology changes of ...
  • Heimowska A, Morawska M, Bocho-Janiszewska A. Biodegradation of poly (ε-caprolactone) ...
  • Thuaksuban N, Nuntanaranont T, Pattanachot W, Suttapreyasri S, Cheung LK. ...
  • Nithya R, Sundaram NM. Biodegradation and cytotoxicity of ciprofloxacin-loaded hydroxyapatite-polycaprolactone ...
  • Shao H-J, Lee Y-T, Chen C-S, Wang J-H, Young T-H. ...
  • Hamilton V, Yuan Y, Rigney D, Puckett A, Ong J, ...
  • Chung T-W, Liu D-Z, Wang S-Y, Wang S-S. Enhancement of ...
  • Rezwan K, Chen Q, Blaker J, Boccaccini AR. Biodegradable and ...
  • Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, Nasr-Esfahani M-H, Ramakrishna S. ...
  • نمایش کامل مراجع