Analysis of Fluid Dynamics and Heat Transfer in a Rectangular Duct with Staggered Baffles

Publish Year: 1398
نوع سند: مقاله ژورنالی
زبان: English
View: 386

This Paper With 18 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_JACM-5-2_006

تاریخ نمایه سازی: 19 تیر 1398

Abstract:

This computational fluid dynamic analysis attempts to simulate the incompressible steady fluid flow and heat transfer in a solar air channel with wall-mounted baffles. Two ꞌSꞌ-shaped baffles, having different orientations, i.e., ꞌSꞌ-upstream and ꞌSꞌ-downstream, were inserted into the channel and fixed to the top and bottom walls of the channel in a periodically staggered manner to develop vortices to improve the mixing and consequently the heat transfer. The analyses are conducted with the Commercial CFD software FLUENT using the finite volume method for Reynolds number varying from 12,000 to 32,000. The numerical results are presented in terms of streamlines, velocity-magnitude, x-velocity, y-velocity, dynamic pressure coefficient, turbulent kinetic energy, turbulent viscosity, turbulent intensity, temperature field, coefficient and factor of normalized skin friction, local and average numbers of normalized Nusselt, and thermal performance factor. The insertion of the S-shaped baffles in the channel not only causes a much high friction loss, f/f0 = 3.319 - 32.336, but also provides a considerable augmentation in the thermal transfer rate in the channel, Nu/Nu0 = 1.939 - 4.582, depending on the S-baffle orientations and the Reynolds number. The S-upstream baffle provides higher friction loss and heat transfer rate than the S-Downstream around 56.443 %, 55.700 %, 54.972 %, 54.289 % and 53.660 %; and 25.011 %, 23.455 %, 21.977 %, 20.626 %, and 19.414 % for Re = 12,000, 17,000, 22,000, 27,000, and 32,000, respectively. In addition, the result analysis shows that the optimum thermal performance factor is around 1.513 at the highest Reynolds number and S-downstream.

Authors

Younes Menni

Unit of Research on Materials and Renewable Energies, Department of Physics, Faculty of Sciences, Abou Bekr Belkaid University, BP ۱۱۹-۱۳۰۰۰-Tlemcen, Algeria

Ahmed Azzi

Unit of Research on Materials and Renewable Energies, Department of Physics, Faculty of Sciences, Abou Bekr Belkaid University, BP ۱۱۹-۱۳۰۰۰-Tlemcen, Algeria | Department of Mechanical Engineering, Faculty of Technology, Abou Bekr Belkaid University

Ali J. Chamkha

Mechanical Engineering Department, Prince Sultan Endowment for Energy and Environment, Prince Mohammad Bin Fahd University, Al-Khobar ۳۱۹۵۲, Saudi Arabia | RAK Research and Innovation Center, American University of Ras Al Khaimah, United Arab

Souad Harmand

Thermique Ecoulement Mecanique Materiaux Mise en Forme Production - TEMPO - Universite de Valenciennes et du Hainaut Cambresis, BP ۵۹۳۱۳ Valenciennes CEDEX ۹, France

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • K.M. Kelkar, and S.V. Patankar, Numerical prediction of flow and ...
  • P.R. Mashaei, S.M. Hosseinalipour, N. Bagheri, M. Taheri-Ghazvini, and S. ...
  • S. Skullong, S. Kwankaomeng, C. Thianpong, and P. Promvonge, Thermal ...
  • C.B. Hwang, and C.A. Lin, A low Reynolds number two-equation ...
  • A.S. Ambekar, R. Sivakumar, N. Anantharaman, and M. Vivekenandan, CFD ...
  • A.P. Rallabandi, N. Alkhamis, and J.C. Han, Heat transfer and ...
  • M.A. Habib, A.M. Mobarak, M.A. Sallak, E.A.A. Hadi, and R.I. ...
  • H. Liu, and J. Wang, Numerical investigation on synthetical performances ...
  • T.M. Liou, and W.B. Wang, Laser holographic-interferometry study of developing ...
  • C. Berner, F. Durst, and D.M. McEligot, Flow around baffles, ...
  • P. Promvonge, T. Chompookham, S. Kwankaomeng, and C. Thianpong, Enhanced ...
  • J.C. Han, Y.M. Zhang, and C.P. Lee, Augmented heat transfer ...
  • S. Acharya, S. Dutta, and T.A. Myrum, Heat transfer in ...
  • P. Promvonge, S. Sripattanapipat, S. Tamna, S. Kwankaomeng, and C. ...
  • M. Mohammadi Pirouz, M. Farhadi, K. Sedighi, H. Nemati, and ...
  • P. Dutta, and A. Hossain, Internal cooling augmentation in rectangular ...
  • Y.T. Yang, and C.Z. Hwang, Calculation of turbulent flow and ...
  • A. Tandiroglu, and T. Ayhan, Energy dissipation analysis of transient ...
  • H. Benzenine, R. Saim, S. Abboudi, and O. Imine, Numerical ...
  • L.C. Demartini, H.A. Vielmo, and S.V Möller, Numeric and experimental ...
  • S. Kwankaomeng, and P. Promvonge, Numerical prediction on laminar heat ...
  • B. Peng, Q. W. Wang, C. Zhang, G. N. Xie, ...
  • P. Stehlik, J. Nemcansky, and D. Kral, Comparison of correction ...
  • Y. Menni, A. Azzi, Design and performance evaluation of air ...
  • A. Abene, V. Dubois, M. Le Ray, and A. Ouagued, ...
  • F. Wang, J. Zhang, and S. Wang, Investigation on flow ...
  • W. Jedsadaratanachai, N. Jayranaiwachira, and P. Promvonge, 3D numerical study on ...
  • R. Kumar, R. Chauhan, M. Sethi, A. Sharma, and A. ...
  • S. Chamoli, and A Taguchi, Approach for optimization of flow ...
  • C. Zamfirescu, and M. Feidt, Cascaded fins for heat transfer ...
  • M. Hosseini, D.D. Ganji, and M.A. Delavar, Experimental and numerical ...
  • A. Kumar, and M.H. Kim, Convective heat transfer enhancement in ...
  • S. Skullong, S. Kwankaomeng, C. Thianpong, and P. Promvonge, Thermal ...
  • S.V. Möller, L.A.M. Endres, and G. Escobar, Wall pressure field ...
  • I. Tanasawa, S. Nishio, K. Tanano, and M. Tado, Enhancement ...
  • Z.X. Yuan, W.Q. Tao, and Q.W. Wang, Numerical prediction for ...
  • R. Kamali, and A.R. Binesh, The importance of rib shape ...
  • C.H. Cheng, and W.H. Huang, Numerical prediction for laminar forced ...
  • J.R. Lopez, N.K. Anand, and L.S. Fletcher, Heat transfer in ...
  • S.S. Mousavi, and K. Hooman, Heat and fluid flow in ...
  • Y. Menni, A. Azzi, C. Zidani, Computational analysis of heat ...
  • P. Dutta, and S. Dutta, Effects of baffle size, perforation ...
  • D. Sahel, H. Ameur, R. Benzeguir, and Y. Kamla, Enhancement ...
  • P.R. Mashaei, M. Taheri-Ghazvini, R. Shabanpour Moghadam, and S. Madani, ...
  • S.S. Mousavi, and K. Hooman, Heat and fluid flow in ...
  • S. Sripattanapipat, and P. Promvonge, Numerical analysis of laminar heat ...
  • Nasiruddin, and M.K. Kamran Siddiqui, Heat transfer augmentation in a ...
  • K. Torii, K.M. Kwak, and K. Nishino. Heat transfer enhancement ...
  • H.M. Yeh, and W.H. Chou, Efficiency of solar air heaters ...
  • T. Giovanni, Heat transfer in rectangular channels with transverse and ...
  • R. Bouchenafa, and R. Saim, Effect of position and height ...
  • M. Ghalambaz, E. Jamesahar, M.A. Ismael, and A.J. Chamkha, Fluid-structure ...
  • H. Zargartalebi, A. Noghrehabadi, M. Ghalambaz, and I. Pop, Natural ...
  • A. Noghrehabadi, M. Ghalambaz, M. Ghalambaz, and A. Ghanbarzadeh, Comparing ...
  • A. Noghrehabadadi, M. Ghalambaz, and A. Ghanbarzadeh, Heat transfer of ...
  • A. Noghrehabadi, R. Pourrajab, and M. Ghalambaz, Effect of partial ...
  • A. Noghrehabadi, R. Mirzaei, M. Ghalambaz, A. Chamkha, and A. ...
  • M. Sabour, M. Ghalambaz, and A. Chamkha, Natural convection of ...
  • M. Ghalambaz, A. Doostani, E. Izadpanahi, and A.J. Chamkha, Phase-change ...
  • B.E. Launder, and D.B. Spalding, The numerical computation of turbulent ...
  • F. Incropera, and P.D. Dewitt, Introduction to heat transfer, fifth ...
  • S.V. Patankar, Numerical heat transfer and fluid flow, McGraw-Hill, New ...
  • B.P. Leonard, and S. Mokhtari, Ultra-sharp nonoscillatory convection schemes for ...
  • نمایش کامل مراجع