Publisher of Iranian Journals and Conference Proceedings

Please waite ..
Publisher of Iranian Journals and Conference Proceedings
Login |Register |Help |عضویت کتابخانه ها
Paper
Title

POWER SYSTEM FAULTS CLASSIFICATION WITH PATTERN RECOGNITION USING NEURAL NETWORK

ششمین کنفرانس بین‌المللی مسائل فنی و فیزیکی در مهندسی قدرت
Year: 1389
COI: ICTPE06_039
Language: EnglishView: 1,467
This Paper With 5 Page And PDF Format Ready To Download

Buy and Download

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این Paper را که دارای 5 صفحه است به صورت فایل PDF در اختیار داشته باشید.
آدرس ایمیل خود را در کادر زیر وارد نمایید:

Authors

M Karimi - Electrical and Robotics faculty, Shahrood University of Technology, Shahrood, Iran
M Banejad - Electrical and Robotics faculty, Shahrood University of Technology, Shahrood, Iran
H Hassanpour - IT and Computer faculty, Shahrood University of Technology, Shahrood, Iran
A Moeini - Electrical and Robotics faculty, Shahrood University of Technology, Shahrood, Iran

Abstract:

This paper present a new intelligent approach to identify fault types and phases. A fault classification method using self-organizing map (SOM) neural network (NN) is used to classify various patterns of associated voltages and currents of fault phenomena. First difference between this paper and pervious researches is proposing a novel classification criterion. In this paper is proposed to use symmetrical components and phasor futures of both voltage and current as criterion parameters. Second difference is application of SOMNN for classification purpose. Because of using novel effective criterion parameters, it is possible to use very simple NN such as SOM. Performance of the proposed method is evaluated on test power system. Simulation results shows that the proposed approach can be used as an effective tool for high speed relaying.

Keywords:

Paper COI Code

This Paper COI Code is ICTPE06_039. Also You can use the following address to link to this article. This link is permanent and is used as an article registration confirmation in the Civilica reference:

https://civilica.com/doc/90046/

How to Cite to This Paper:

If you want to refer to this Paper in your research work, you can simply use the following phrase in the resources section:
Karimi, M and Banejad, M and Hassanpour, H and Moeini, A,1389,POWER SYSTEM FAULTS CLASSIFICATION WITH PATTERN RECOGNITION USING NEURAL NETWORK,6th International conference on Technical and Physical Problems of Power Engineering,Tabriz,https://civilica.com/doc/90046

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :

  • . Whei-Min Lin, Chin-Der Yang, Jia-Hong Lin, Ming- Tong Tsay ...
  • . K. M. Silva and B. A. Souza, and N.S.D. ...
  • neural Artificial:ه [4]. D. V. Coury and D. C. Jorge, ...
  • . H.Wang and W. W. Keerthipala, "Fuzzy-neuro approach to fault ...
  • . T. Dalstein and B. Kulicke, "Neural network approach to ...
  • Simon Haykin, "neural networks, a comprehensive University of Technology, Brisbane, ...
  • foundation" Mc Master University, Hamilton, Ontario, Canada, Prentice Hall International, ...
  • . K.L Du and M.N.S. Swamy, "Neural Networrks in a ...

Research Info Management

Certificate | Report | من نویسنده این مقاله هستم
این Paper در بخشهای موضوعی زیر دسته بندی شده است:

اطلاعات استنادی این Paper را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

Scientometrics

The specifications of the publisher center of this Paper are as follows:
Type of center: دانشگاه دولتی
Paper count: 8,555
In the scientometrics section of CIVILICA, you can see the scientific ranking of the Iranian academic and research centers based on the statistics of indexed articles.

New Papers

New Researchs

Share this page

More information about COI

COI stands for "CIVILICA Object Identifier". COI is the unique code assigned to articles of Iranian conferences and journals when indexing on the CIVILICA citation database.

The COI is the national code of documents indexed in CIVILICA and is a unique and permanent code. it can always be cited and tracked and assumed as registration confirmation ID.

Support