Global Solar Radiation Prediction for Makurdi, Nigeria Using Feed Forward Backward Propagation Neural Network

Publish Year: 1397
نوع سند: مقاله ژورنالی
زبان: English
View: 488

This Paper With 5 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_JREE-5-1_006

تاریخ نمایه سازی: 30 شهریور 1398

Abstract:

The optimum design of solar energy systems strongly depends on the accuracy of  solar radiation data. However, the availability of accurate solar radiation data is undermined by the high cost of measuring equipment or non-functional ones. This study developed a feed-forward backpropagation artificial neural network model for prediction of global solar radiation in Makurdi, Nigeria (7.7322  N long. 8.5391  E) using MATLAB 2010a Neural Network toolbox. The training and testing data were obtained from the Nigeria metrological station (NIMET), Makurdi. Five meteorological input parameters including maximum and temperature, mean relative humidity, wind speed, and sunshine hour were used, while global solar radiation was used as the output of the network. During training, the root mean square error, correlation coefficient and mean absolute percentage error (%) were 0.80442, 0.9797, and 3.9588, respectively; for testing, a root mean square value, correlation coefficient, and mean absolute percentage error (%) were 0.98831, 0.9784, and 5.561, respectively. These parameters suggest high reliability of the model for the prediction of solar radiation in locations where solar radiation data are not available.

Authors

Aondoyila Kuhe

Department of Mechanical Engineering, University of Agriculture, Makurdi, Nigeria

Victor Terhemba Achirgbenda

Department of Mechanical Engineering, University of Agriculture, Makurdi, Nigeria

Mascot Agada

Department of Mechanical Engineering, University of Agriculture, Makurdi, Nigeria

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Sueyoshi, T. and Goto, M., Photovoltaic power stations in Germany ...
  • Zhao, H.-X. and Magoulès, F., A review on the prediction ...
  • Islam, S.M., Kabir, M.M. and Kabir, N., Artificial neural networks ...
  • Kalogirou, S. and Sencan, A., Artificial intelligence techniques in solar ...
  • Tymvios, F.S., Jacovides, C.P., Michaelides, S.C. and Scouteli, C., Comparative ...
  • Hernandez Neto, A. and Sanzovo Fiorelli, F.A., Comparison between detailed ...
  • Neelamegama, P. and Amirtham, V.A., Prediction of solar radiation for ...
  • Egeonu, D.I., Njoku, H.O., Okolo, P.N. and Enibe, S.O., Comparative ...
  • Li, K., Su, H. and Chu, J., Forecasting building energy ...
  • Karatasou, S., Santamouris, M. and Geros, V., Modeling and predicting ...
  • Kumar, A.Y. and Chandel, S.S., Solar radiation prediction using artificial ...
  • Edalati, S., Ameri, M. and Iranmanesh, M., Estimating and modeling ...
  • Jovanovic, R.Z., Sretenovic, A.A. and Zivkovic, B.D., Ensemble of various ...
  • Yohanna, J.K., Itodo, I.N. and Umogbai, V.I., A model for ...
  • Yadav, A.K. and Hasmat, M., Comparison of different artificial neural ...
  • Renno, C., Petito, F. and Gatto, A., Artificial neural network ...
  • Huang, Y., Advances in artificial neural networks: Methodological development and ...
  • نمایش کامل مراجع