Publisher of Iranian Journals and Conference Proceedings

Please waite ..
Publisher of Iranian Journals and Conference Proceedings
Login |Register |Help |عضویت کتابخانه ها

A Novel Method Based on Support Vector Machines to Classify Bank Transactions

فصلنامه پردازش سیگنال و انرژیهای تجدیدپذیر، دوره: 3، شماره: 3
Year: 1398
COI: JR_SPRE-3-3_005
Language: EnglishView: 206
This Paper With 9 Page And PDF Format Ready To Download

Buy and Download

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این Paper را که دارای 9 صفحه است به صورت فایل PDF در اختیار داشته باشید.
آدرس ایمیل خود را در کادر زیر وارد نمایید:


Melika Tojjari - Department of Computer Engineering, Islamic Azad University, South Tehran Branch, Tehran, Iran
Razieh Farazkish - Department of Computer Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran


Improvements in information technology have contributed to the development of the e-banking industry. Specifically, despite the reduction of bank charges, e-banking is one of the payment methods that, by employing it based on valid theory, can be successful in satisfying customers due to the easiness of access to financial transactions at any time and place with minimum required tools. A mobile device imposes an increasing amount of time, energy and expense in comparison with face-to-face visits. In spite of many benefits this channel has for customers, there are security concerns for service providers and users in the banking sector. Consequently, in this inquiry, the focus is on the role of the support vector machine neural network in the classification of Mellat mobile transactions.  To implement the intended procedure, after compiling the information in the preprocessing stage and purification and normalization of data, feature selection is done with the main component analysis algorithm. Then, in post-processing stage, the Neural Network supports the Mobile Banking classification as a safe but fake system. In order to compare the suggested method, we use Bayon floors and multilayer perceptron. The outcomes demonstrate that the support vector machine neural network can fulfill the classification of user’s mobile banking transaction with a mean square error of 0.216 and a precision of 94.6% of all data.


Paper COI Code

This Paper COI Code is JR_SPRE-3-3_005. Also You can use the following address to link to this article. This link is permanent and is used as an article registration confirmation in the Civilica reference:

How to Cite to This Paper:

If you want to refer to this Paper in your research work, you can simply use the following phrase in the resources section:
Tojjari, Melika and Farazkish, Razieh,1398,A Novel Method Based on Support Vector Machines to Classify Bank Transactions,

Research Info Management

Certificate | Report | من نویسنده این مقاله هستم

اطلاعات استنادی این Paper را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.


The specifications of the publisher center of this Paper are as follows:
Type of center: Azad University
Paper count: 11,783
In the scientometrics section of CIVILICA, you can see the scientific ranking of the Iranian academic and research centers based on the statistics of indexed articles.

Share this page

More information about COI

COI stands for "CIVILICA Object Identifier". COI is the unique code assigned to articles of Iranian conferences and journals when indexing on the CIVILICA citation database.

The COI is the national code of documents indexed in CIVILICA and is a unique and permanent code. it can always be cited and tracked and assumed as registration confirmation ID.