The AIM, RDG, NBO, Quantum and Structural Study of Adsorption of Phosgene Gas on the Surface of Pristine and Al, P Doped Ga12N12 Nano Cluster: A DFT Method

Publish Year: 1398
نوع سند: مقاله ژورنالی
زبان: English
View: 483

This Paper With 19 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_CHM-3-5_004

تاریخ نمایه سازی: 20 مهر 1398

Abstract:

The main objective of this work is to study the sensivity of pristine, Al, P and Al & P doped Ga12N12 to adsorb phosgene (COCl2) molecule. The interaction of COCl2 from O, C and Cl sites on the surface of Ga12N12 is investigated by applying the density functional theory (DFT) at the cam-B3LYP/6-31G(d) level of theory.  The geometrical and electrical structures, quantum descriptive, thermodynamic parameters, solvent effect, atom in molecule theory (AIM), natural bond orbital (NBO), and the reduced density gradient (RDG) are calculated at the above level of theory. The calculated results indicate that the adsorption of COCl2 on the surface of pristine and Al, P and Al & P doped Ga12N12 is exothermic, as well as Al-doped Ga12N12 is more favorable than P and Al & P doped. The recovery time results for adsorption of COCl2 from O site on the surface of Ga12N12, Al-Ga11N12, Ga12N11P and Al-Ga11N11P are 0.103, 4.69×10-7, 3.81×10-12 and 4.31×10-7 respectively. As a result, these nanoclusters can be used as sensor devices toward COCl2 molecule. The deformation energy results reveal that the structural change of Ga12N12 and COCl2 at all adsorption states are not significant. The AIM, RDG and NBO results demonstrate that the intermolecular interaction from O site of COCl2 on the surface of pristine, Al, P and Al & P doped Ga12N12 is stronger than C and Cl atoms sites of COCl2 as it is an electrostatic attractive type. The main objective of this work is to study the sensivity of pristine, Al, P and Al & P doped Ga12N12 to adsorb phosgene (COCl2) molecule. The interaction of COCl2 from O, C and Cl sites on the surface of Ga12N12 is investigated by applying the density functional theory (DFT) at the cam-B3LYP/6-31G(d) level of theory.  The geometrical and electrical structures, quantum descriptive, thermodynamic parameters, solvent effect, atom in molecule theory (AIM), natural bond orbital (NBO), and the reduced density gradient (RDG) are calculated at the above level of theory. The calculated results indicate that the adsorption of COCl2 on the surface of pristine and Al, P and Al & P doped Ga12N12 is exothermic, as well as Al-doped Ga12N12 is more favorable than P and Al & P doped. The recovery time results for adsorption of COCl2 from O site on the surface of Ga12N12, Al-Ga11N12, Ga12N11P and Al-Ga11N11P are 0.103, 4.69×10-7, 3.81×10-12 and 4.31×10-7 respectively. As a result, these nanoclusters can be used as sensor devices toward COCl2 molecule.  

Keywords:

COCl2 , Ga12N12 , Al , P and Al&P doped , DFT , NBO

Authors

P. Hosseini

Department of Applied Chemistry, Faculty of Science, Malayer University, Malayer, ۶۵۱۷۴, Iran

Mahdi Rezaei Sameti

Department of Applied Chemistry, Faculty of Science, Malayer University, Malayer, ۶۵۱۷۴, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Schneider W., Diller W. Phosgene, Ullmann’s Encyclopedia of Industrial Chemistry, Weinheim: ...
  • Borak J., Diller W.F. J. Occupat. Environt. Med., 2001, 43:110 ...
  • U.S. Environmental Protection Agency. Health Assessment Document for Phosgene, Office of Research ...
  • U.S. Department of Health and Human Services. Hazardous Substances Data ...
  • Gift J., McGaughy R., Sonawane, B. Toxicological review of phosgene. ...
  • Shahabi M., Raissi H. J. Incl. Phenom. Macrocycl. Chem., 2016, ...
  • Kumar D., Verma V., Dharamvir K., Bhatti H.S. Model. Mater. ...
  • Liu B., Bando Y., Wang M., Tang C., Mitome M., ...
  • Zhang J., Meguid S.A. Nano. Energy., 2015, 12:322 ...
  • Colussi M.L., Baierle R.J., Miwa R.H. J. Appl. Phys., 2008, ...
  • Srivastava A., Khan M.I., Tyagi N., Swaroop Khare P. Sci. ...
  • Valedbagi S., Mohammad Elahi S., Abolhassani M.R., Fathalian A., Esfandiar ...
  • Chandiramouli R. Struct. Chem., 2015, 26:375 ...
  • Tang Q., Cui Y., Li Y., Zhou Z., Chen Z. ...
  • Beheshtian J., Kamfiroozi M., Bagheri Z., Peyghan A.A. Chin. J. ...
  • Beheshtian J., Bagheri Z., Kamfiroozi M., Ahmadi A. Microelectron. J., ...
  • Beheshtian J., Kamfiroozi M., Bagheri Z., Ahmadi A. Comput. Mater. ...
  • Zhang J., Meguid S.A. Nano Energy., 2015, 12:322 ...
  • Goldberger J., He R., Zhang Y., Lee S., Yan H., ...
  • Lee S.M., Lee Y.H., Hwang Y.G., Elsner J., Porezag D., ...
  • Zhang M., Su Z.M., Yan L.K., Qiu Y.Q., Chen G.H., ...
  • Yang M., Shi J., Zhang M., Zhang S., Bao Z., ...
  • Khaddeo K.R., Srivastava A., Kurchania R. J. Comput. Theor. Nanosci., ...
  • Park Y.S., Lee G., Holmes M.J., Chan C.C.S., Reid B.P.L., ...
  • Moradian R., Azadi S., Farahani S.V. Phys. Lett. A., 2008,372:6935 ...
  • Seif A., Ahmadi T.S., Bodaghi A., Hosseini  J. J. Mole. ...
  • Chen G.X., Zhang Y. , Wang D.D., Zhang J.M. J. ...
  • Sun Q., Selloni A., Myers T.H., Alan Doolittle W. Phys. ...
  • Sun Q., Selloni A., Myers T.H., Alan Doolittle W. Phys. ...
  • Rosa A.L., Neugebauer J. Phys. Rev. B., 2006, 73:205314 ...
  • Shahzad Khan M., Srivastava A. J. Electroanaly. Chem., 2016, 775:243 ...
  • Rezaei‑Sameti M., Moradi F. J. Incl. Phenom. Macrocycl. Chem., 2017, ...
  • Rezaei‒Sameti M. Arabian J. Chem., 2015, 8:168 ...
  • Rezaei-Sameti M., Behbahani H. J. Phys. Chem. Res., 2018, 6:31 ...
  • Rezaei-Sameti M., Zanganeh F. J. Sulfur. Chem., 2017, 38:384 ...
  • Becke A.D. J. Chem. Phys., 1993, 98:5648 ...
  • Lee C., Yang W., Parr R.G. Phys. Rev. B., 1988, ...
  • Yanai T., Tew D.P., Handy N.C. Chem. Phys. Lett., 2004, ...
  • Frisch M.J., et al. Gaussian 09, Revision D.01, Gaussian, Inc., ...
  • Boys F.S., Bernardi F. Mol. Phys., 1970, 19:553 ...
  • James C., Amalraj A., Reghunathan R., Hubert Joe I., Jaya ...
  • Parr R.G., Pearson R.G. J. Am. Chem. Soc., 1983, 105:7512 ...
  • Jensen W.B. J. Chem. Educ., 1996, 73:11 ...
  • Morell C., Labet V., Grand A., Chermette H. Phys. Chem.Chem. ...
  • Pearson R.G. J. Org. Chem., 1989, 54:1423 ...
  • Zhou Z., Parr R.G. J. Am. Chem. Soc., 1990, 112:5720 ...
  • Faust W.L. Science., 1989, 245:37 ...
  • Pearson R.G. J. Am. Chem. Soc., 1985, 107:6801 ...
  • Parr R.G., Chattaraj P.K. J. Am. Chem. Soc., 1991, 113:1854 ...
  • Glendening E.D., Reed A.E., Carpenter J.E., Weienhold F.NBO, Version 3.1. ...
  • Murray J.S., Sen K., Molecular electrostatic potentials conceptsand applications. Elsevier, ...
  • Bader R.F.W., Atoms in Molecules: A Quantum Theory. Oxford University ...
  • Contreras-Garcia J., Johnson E., Keinan S., Chaudret R., Piquemal J., ...
  • Johnson E.R., Keinan S., Mori‒Sanchez P., Contreras‒Garcia J., Cohen A.J., ...
  • نمایش کامل مراجع