Publisher of Iranian Journals and Conference Proceedings

Please waite ..
Publisher of Iranian Journals and Conference Proceedings
Login |Register |Help |عضویت کتابخانه ها

Injection Molding Parameters Optimization through a Hybrid System of Artificial Neural Network and Genetic Algorithm

Year: 1389
COI: ISME18_237
Language: EnglishView: 1,820
This Paper With 6 Page And PDF Format Ready To Download

Buy and Download

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این Paper را که دارای 6 صفحه است به صورت فایل PDF در اختیار داشته باشید.
آدرس ایمیل خود را در کادر زیر وارد نمایید:


S.Mehdi Alialmoussavi - M.S. student, Urmia University
Taher Azdast - Assistant Professor, Urmia University
Maghsud Solimanpur - Associate Professor, Urmia University
Ata Jalili Kohne Shahri۴ - M.S. student, Urmia University


Nowadays competitive conditions force us to faster and cheaper production with a higher quality. The use of Computer-aided analysis and engineering softwares such as MoldFlow Plastic Insight (MPI) could help engineers to have initial knowledge about the plastic injection processes such as injection, packing, cooling, ejection and process/part quality control that will be undertaken for the parts, which are designed to beproduced by plastic injection method. In this study, MPI was applied to generate responses such as average volumetric shrinkage (shrinkage) and in-mold pressure (pressure). Process parameters such as mold temperature, melt temperature and gate location, are considered as model variables. The objective of this research is to obtain an optimal process parameters corresponding to minimum shrinkage and pressure. At first Taguchi method is used to solve the minimizing problems, separately. Then two three-layer Back- Propagation (BP) Artificial Neural Networks (ANN) are used to modeling the relationship between processing parameters and part shrinkage and also pressure, separately. A couple of ANN and Genetic Algorithm (GA) is used to solve the two objective problem and to obtain the optimal parameter values and set of model variables leading to minimum shrinkage and pressure. Finally, the optimal set of variables was compared with sets that obtained from Taguchi method analyze for minimum shrinkage and minimum pressure, separately. This compare proves that couple of ANN/GA has reasonable performance and also shows that use of this hybrid method enhances optimization power in optimization of process parameters.


Paper COI Code

This Paper COI Code is ISME18_237. Also You can use the following address to link to this article. This link is permanent and is used as an article registration confirmation in the Civilica reference:

How to Cite to This Paper:

If you want to refer to this Paper in your research work, you can simply use the following phrase in the resources section:
Alialmoussavi, S.Mehdi and Azdast, Taher and Solimanpur, Maghsud and Jalili Kohne Shahri۴, Ata,1389,Injection Molding Parameters Optimization through a Hybrid System of Artificial Neural Network and Genetic Algorithm,18th Annual Conference of Mechanical Engineering,Tehran,

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :

  • LAM Y.C.. JIN S., 2001, "Optimization of gate location for ...
  • Baesso R., Giovanni L, 2007, "Filling balance optimization by best ...
  • LI J.Q., LI D.Q., GUO Z.V., LV H.Y., 2007, "Single ...
  • Lam Y.C, Britton G.A., Liu D.S., 2004, "Optimization of gate ...
  • Titomanlio G., Jansen KMB., 1996, "In-mold Shrinkage and Stress Prediction ...
  • Chiang K.T., Chang F.P, 2006, "Analysis of shrinkage and warpage ...
  • Oktem H., Erzurumlu T., Uzman I., 2007, "Application of Taguchi ...
  • Changyu Sh, Lixia W, Qian L, 2007, "Optimization of injection ...

Research Info Management

Certificate | Report | من نویسنده این مقاله هستم
این Paper در بخشهای موضوعی زیر دسته بندی شده است:

اطلاعات استنادی این Paper را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.


The specifications of the publisher center of this Paper are as follows:
Type of center: دانشگاه دولتی
Paper count: 15,213
In the scientometrics section of CIVILICA, you can see the scientific ranking of the Iranian academic and research centers based on the statistics of indexed articles.

New Papers

New Researchs

Share this page

More information about COI

COI stands for "CIVILICA Object Identifier". COI is the unique code assigned to articles of Iranian conferences and journals when indexing on the CIVILICA citation database.

The COI is the national code of documents indexed in CIVILICA and is a unique and permanent code. it can always be cited and tracked and assumed as registration confirmation ID.