Performance of a Two-stages Gas Gun: Experimental, Analytical and Numerical Analysis

Publish Year: 1398
نوع سند: مقاله ژورنالی
زبان: English
View: 336

This Paper With 10 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_IJE-32-5_018

تاریخ نمایه سازی: 10 آذر 1398

Abstract:

Two stages gas guns are used for various purposes, particularly for mechanical characterization of materials at high rate of deformations. The performance of a two stages gas gun is studied in this work using the theory of the two-stage gas gun proposed by Rajesh, numerical simulation using combined Eulerian/ Lagrangian elements in Autodyna commercial code and experiment using a two stage gas gun developed by the authors of this study. Equations governing the motion of the piston and projectile are solved using Runge-Kutta method. The effects of parameters such as chamber pressure, pump tube pressure and piston mass on the performance of gun are explored. The results of numerical simulation and analytical methods are validated by experiment. Finally, a comparison between the analytical, numerical and experimental results shows that the theory proposed by Rajesh, yields reasonable predictions for the two stage gas gun performance in the first place, and Autodyn software, using combined Eulerian/ Lagrangian elements, gives accurate estimations for gas gun parameters, in the second place. A 3-D working diagram is provided for prediction of projectile velocity for any state of pump and chamber pressures which are the most important variables for a gas gun with a fixed geometry. Two stages gas guns are used for various purposes, particularly for mechanical characterization of materials at high rate of deformations. The performance of a two stages gas gun is studied in this work using the theory of the two-stage gas gun proposed by Rajesh, numerical simulation using combined Eulerian/ Lagrangian elements in Autodyna commercial code and experiment using a two stage gas gun developed by the authors of this study. Equations governing the motion of the piston and projectile are solved using Runge-Kutta method. The effects of parameters such as chamber pressure, pump tube pressure and piston mass on the performance of gun are explored. The results of numerical simulation and analytical methods are validated by experiment. Finally, a comparison between the analytical, numerical and experimental results shows that the theory proposed by Rajesh, yields reasonable predictions for the two stage gas gun performance in the first place, and Autodyn software, using combined Eulerian/ Lagrangian elements, gives accurate estimations for gas gun parameters, in the second place. A 3-D working diagram is provided for prediction of projectile velocity for any state of pump and chamber pressures which are the most important variables for a gas gun with a fixed geometry.  

Keywords:

Authors

G. H. Majzoubi

Department of Mechanical Engineering, Bu-Ali Sina University, Hamedan, Iran

M. H. Ghaed Rahmati

Department of Mechanical Engineering, Bu-Ali Sina University, Hamedan, Iran

M. Kashfi

Department of Mechanical Engineering, Ayatollah Boroujerdi University, Boroujerd, Iran