Transient Entropy Generation Analysis During Wustite Pellet Reduction to Sponge Iron

Publish Year: 1397
نوع سند: مقاله ژورنالی
زبان: English
View: 402

This Paper With 9 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_IJE-31-8_016

تاریخ نمایه سازی: 10 آذر 1398

Abstract:

The present study carefully examined entropy generation during wustite pellet reduction to sponge iron. The finite volume method was used to solve the governing equations. The grain model was used to simulate the reaction rate. The reactant gases including carbon monoxide and hydrogen were converted to water and carbon dioxide after wustite reduction. Entropy is generated by heat transfer, mass transfer and chemical reactions. The rate of entropy generation is studied over a period of 150 minutes. Based on the governing equations, the share of each process in the generation of entropy was calculated. The effects of gas ratio, porosity, and tortuosity and grain diameter of wustite pellet on entropy generation were investigated. The porosity was changed from 0.2 to 0.5, tortuosity from 1 to 4, grain diameter from 7 to 20 mm and the ratio of reducing gas from 0.5 to 2. According to the results maximum value of entropy generation nearly occurs during first 20 minutes of the reduction process. It is shown that the heat transfer had the highest contribution to entropy generation. The results also indicates porosity and gas ratio are inversely proportional to the rate of entropy generation while tortuosity and grain diameter are directly proportional to entropy generation rate.

Authors

Mojtaba Biglari

Mechanical Engineering, Semnan University

Mohammad sadegh Valipour

Mechanical Engineering, Semnan University

Ariyan Zare Ghadi

Mechanical Engineering, Semnan University