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ON LOCAL ANTIMAGIC CHROMATIC NUMBER OF GRAPHS
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A {it local antimagic labeling} of a connected graph $G$ with at least three vertices, is a bijection $f:E(G) rightarrow
{1,2,ldots , |E(G)|}$ such that for any two adjacent vertices $u$ and $v$ of $G$, the condition $omega _{f}(u) neq
omega _{f}(v)$ holds; where $omega _{f}(u)=sum _{xin N(u)} f(xu)$. Assigning $omega _{f}(u)$ to $u$ for each vertex
$u$ in $V(G)$, induces naturally a proper vertex coloring of $G$; and $|f|$ denotes the number of colors appearing in
this proper vertex coloring. The {it local antimagic chromatic number} of $G$, denoted by $chi _{la}(G)$, is defined as
the minimum of $|f|$, where $f$ ranges over all local antimagic labelings of $G$. In this paper, we explicitly construct
an infinite class of connected graphs $G$ such that $chi _{la}(G)$ can be arbitrarily large while $chi _{la}(G vee
bar{K_{2}})=3%, where $G vee bar{K_{2}}$ is the join graph of $G$ and the complement graph of $K_{2}$. The
aforementioned fact leads us to an infinite class of counterexamples to a result of [Local antimagic vertex coloring of
.[a graph, Graphs and Combinatorics 33} (2017), 275-285
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