CIVILICA We Respect the Science
(ناشر تخصصی کنفرانسهای کشور / شماره مجوز انتشارات از وزارت فرهنگ و ارشاد اسلامی: ۸۹۷۱)

Semantic Aspect Based Sentiment Classification using Normalized Yahoo Distance based Particle Swarm Optimization

عنوان مقاله: Semantic Aspect Based Sentiment Classification using Normalized Yahoo Distance based Particle Swarm Optimization
شناسه ملی مقاله: JR_IJMEC-10-36_002
منتشر شده در شماره 36 دوره 10 فصل در سال 1399
مشخصات نویسندگان مقاله:

Muhammad Rizwan Rashid Rana - University Institute of Information Technology, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan

خلاصه مقاله:
People’s opinions and experience are important sources of information in our everyday life. In the modern digital age, text is the main method of communicating information on the Internet. Sentiment Classification is the process of judging the sentiments and emotions from reviews. The paper investigates new approaches to the automated extraction of opinions and aspects and sentiment classification from customer reviews. It focuses on aspect-based sentiment classification from customer reviews. Evaluations algorithms and lexicon approaches with normalized yahoo distance are utilized based on semantic relations of customer reviews. The contributions are significant, given both the rapid explosion of today’s accessibility to the Internet and people’s desire to make informed decisions.

کلمات کلیدی:
Aspects, Sentiments, Sentiment Classification, Part of Speech Tagging, Particle Swarm Optimization.

صفحه اختصاصی مقاله و دریافت فایل کامل: https://civilica.com/doc/992169/