Effect of Thermal Environment on Vibration Analysis of Partially Cracked Thin Isotropic Plate Submerged in Fluid

Publish Year: 1398
نوع سند: مقاله ژورنالی
زبان: English
View: 248

This Paper With 24 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_JSMA-11-1_009

تاریخ نمایه سازی: 12 اسفند 1398

Abstract:

Based on a non classical plate theory, an analytical model is proposed for the first time to analyze free vibration problem of partially cracked thin isotropic submerged plate in the presence of thermal environment. The governing equation for the cracked plate is derived using the Kirchhoff’s thin plate theory and the modified couple stress theory. The crack terms are formulated using simplified line spring model whereas the effect of thermal environment is introduced using thermal moments and in-plane forces. The influence of fluidic medium is incorporated in governing equation in form fluids forces associated with inertial effects of its surrounding fluids. Applying the Galerkin’s method, the derived governing equation of motion is reformulated into well known Duffing equation. The governing equation for cracked isotropic plate has also been solved to get central deflection which shows an important phenomenon of shift in primary resonance due to crack, temperature rise and internal material length scale parameter. To demonstrate the accuracy of the present model, few comparison studies are carried out with the published literature. The variation in natural frequency of the cracked plate with uniform rise in temperature is studied considering various parameters such as crack length, fluid level and internal material length scale parameter. Furthermore the variation of the natural frequency with plate thickness is also established.

Authors

Shashank Soni

National Institute of Technology, Raipur, Chhattisgarh ۴۹۲۰۱۰, India

N.K Jain

National Institute of Technology, Raipur, Chhattisgarh ۴۹۲۰۱۰, India

P.V Joshi

Indian Institute of Information Technology, Nagpur, Maharashtra, ۴۴۰۰۰۶, India

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Murphy K.D., Ferreira D., 2001, Thermal buckling of rectangular plates, ...
  • Yang J., Shen H.-S., 2002,Vibration characteristics and transient response of ...
  • Jeyaraj P., Padmanabhan C., Ganesan N., 2008, Vibration and acoustic ...
  • Jeyaraj P., Ganesan N., Padmanabhan C., 2009,Vibration and acoustic response ...
  • Li Q., Iu V.P., Kou K.P., 2009, Three-dimensional vibration analysis ...
  • Kim Y.-W., 2005,Temperature dependent vibration analysis of functionally graded rectangular ...
  • Natarajan S., Chakraborty S., Ganapathi M. Subramanian M., 2014, A ...
  • Viola E., Tornabene F., Fantuzzi N., 2013, Generalized differential quadrature ...
  • Rice J., Levy N., 1972, The part-through surface crack in ...
  • Delale F., Erdogan F., 1981, Line-spring model for surface cracks ...
  • Israr A., Cartmell M.P., Manoach E., Trendafilova I., Ostachowicz W., ...
  • Ismail R., Cartmell M.P., 2012, An investigation into the vibration ...
  • Joshi P.V., Jain N.K., Ramtekkar G.D., 2014, Analytical modeling and ...
  • Joshi P. V., Jain N.K., Ramtekkar G.D., 2015, Effect of ...
  • Joshi P. V., Jain N.K., Ramtekkar G.D., Virdi G.S., 2016, ...
  • Soni S., Jain N.K., Joshi P. V., 2018, Vibration analysis ...
  • Soni S., Jain N.K., Joshi P.V., 2017, Analytical modeling for ...
  • Tsiatas G.C., 2009, A new Kirchhoff plate model based on ...
  • Altan S.B., Aifantis E.C., 1992, On the structure of the ...
  • Park S.K., Gao X.-L., 2006, Bernoulli–Euler beam model based on ...
  • Mousavi S.M., Paavola J., 2014, Analysis of plate in second ...
  • Yin L., Qian Q., Wang L., Xia W., 2010,Vibration analysis ...
  • Papargyri-Beskou S., Beskos D.E., 2007, Static, stability and dynamic analysis ...
  • Yang F., Chong C.M., Lam D.C.C., Tong P., 2002, Couple ...
  • Chen W., Xu M., Li L., 2012, A model of ...
  • Gao X.L., Zhang G.Y., 2016, A non-classical Kirchhoff plate model ...
  • Gupta A., Jain N.K., Salhotra R., Joshi P.V., 2015, Effect ...
  • Gupta A., Jain N.K., Salhotra R., Rawani A.M., Joshi P.V., ...
  • Lamb H., 2016, On the vibrations of an elastic plate ...
  • Lindholm U., Kana D., Chu W., Abramson H., 1965, Elastic ...
  • Muthuveerappan G., Ganesan N., Veluswami M.A., 1979, A note on ...
  • Kwak M.K., 1996, Hydroelastic vibration of rectangular plates, Journal of ...
  • Fu Y., Price W.G., 1987, Interactions between a partially or ...
  • Kwak M.K., Kim K.C., 1991, Axisymmetric vibration of circular plates ...
  • Amabili M., Frosali G., Kwak M.K., 1996, Free vibrations of ...
  • Haddara M.R., Cao S., 1996, A study of the dynamic ...
  • Soedel S.M., Soedel W., 1994, On the free and forced ...
  • Kerboua Y., Lakis A.A., Thomas M., Marcouiller L., 2008,Vibration analysis ...
  • Hosseini-Hashemi S., Karimi M., Rokni H., 2012, Natural frequencies of ...
  • Liu T., Wang K., Dong Q.W., Liu M.S., 2009, Hydroelastic ...
  • Si X.H., Lu W.X., Chu F.L., 2012, Modal analysis of ...
  • Si X., Lu W., Chu F., 2012, Dynamic analysis of ...
  • Jones R.M., 2006, Buckling of Bars, Plates, and Shells, Bull ...
  • نمایش کامل مراجع