ناشر تخصصی کنفرانس های ایران

لطفا کمی صبر نمایید

Publisher of Iranian Journals and Conference Proceedings

Please waite ..
Publisher of Iranian Journals and Conference Proceedings
Login |Register |Help |عضویت کتابخانه ها
Paper
Title

Quasi-Static Deformation of a Uniform Thermoelastic Half –Space Due to Seismic Sources and Heat Source

Year: 1397
COI: JR_JSMA-10-4_002
Language: EnglishView: 110
This Paper With 17 Page And PDF Format Ready To Download

Buy and Download

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این Paper را که دارای 17 صفحه است به صورت فایل PDF در اختیار داشته باشید.
آدرس ایمیل خود را در کادر زیر وارد نمایید:

Authors

A.K Vashishth - Department of Mathematics, Kurukshetra University, Kurukshetra ۱۳۶۱۱۹, India
K Rani - Department of Mathematics, CMG Govt. College for Women, Bhodia Khera, Fatehabad ۱۲۵۰۵۰, India

Abstract:

This paper investigates the quasi-static plane deformation of an isotropic thermoelastic half-space due to buried seismic sources and heat source. Governing equations of thermo-elasticity are solved to obtain solutions for seismic sources in a thermoelastic half-space. The general solutions are acquired with the aid of Laplace and Fourier transforms and with the use of boundary conditions. The case of dip-slip line dislocation is studied in detail along with line heat source. Analytical solutions for two limiting cases: adiabatic and isothermal, are obtained. The solutions for displacement, stresses and temperature in space-time domain are obtained by using a numerical inversion procedure. The accuracy of the proposed method is verified through a comparison of the results obtained with the existing solutions for elastic medium. In addition, numerical results for displacements, stresses and temperature function, induced by a vertical dip-slip dislocation and line heat source, are presented graphically to illustrate the effect of inclusion of thermal effect in simulation of the problem.   

Keywords:

Paper COI Code

This Paper COI Code is JR_JSMA-10-4_002. Also You can use the following address to link to this article. This link is permanent and is used as an article registration confirmation in the Civilica reference:

https://civilica.com/doc/999271/

How to Cite to This Paper:

If you want to refer to this Paper in your research work, you can simply use the following phrase in the resources section:
Vashishth, A.K and Rani, K,1397,Quasi-Static Deformation of a Uniform Thermoelastic Half –Space Due to Seismic Sources and Heat Source,https://civilica.com/doc/999271

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :

  • Steketee J. A., 1958, On Volterra s dislocations in a ...
  • Maruyama T., 1964, Statical elastic dislocations in an infinite and ...
  • Maruyama T., 1966, On two-dimensional elastic dislocations in an infinite ...
  • Savage J.C., 1974, Dislocations in Seismology, Dislocation Theory: A Treatise, ...
  • Savage J.C., 1980, Dislocations in Seismology, Dislocations in Solids, Amsterdam, ...
  • Freund L.B., Barnett D.M., 1976, A two dimensional analysis of ...
  • Okada Y., 1985, Surface deformation due to shear and tensile ...
  • Okada Y., 1992, Internal deformation due to shear and tensile ...
  • Rani S., Singh S.J., Garg N.R., 1991, Displacements and stresses ...
  • Cohen S.C., 1992, Post seismic deformation and stresses diffusion due ...
  • Singh S.J., Rani S., 1996, 2-D modeling of the crustal ...
  • Singh M., Singh S.J., 2000, Static deformation of a uniform ...
  • Singh S.J., Kumar A., Rani S., Singh M., 2002, Deformation ...
  • Tomar S.K., Dhiman N.K., 2003, 2-D Deformation analysis of a ...
  • Rani S., Verma R.C., 2013, Two-dimensional deformation of a uniform ...
  • Gade M., Raghukanth S.T.G., 2015, Seismic ground motion in micro ...
  • Sahrawat R.K., Godara Y., Singh M., 2014, Static deformation of ...
  • Volkov D., 2009, An inverse problem for faults in elastic ...
  • Volkov D., Vousin C., Ionescu I.R., 2017, Determining fault geometries ...
  • Singh S.J., Garg N. R., 1986, On the representation of ...
  • Singh S.J., Rani S., 1991, Static deformation due to two ...
  • Rani S., Singh S. J., 1992, Static deformation of a ...
  • Rani S., Singh S.J., 1992, Static deformation of two welded ...
  • Singh S.J., Rani S., Garg N. R., 1992, Displacement and ...
  • Garg N.R., Madan D.K., Sharma R.K., 1996, Two-dimensional deformation of ...
  • Singh S. J., Punia M., Kumari G., 1997, Deformation of ...
  • Rani S., Bala N., 2006, 2-D deformation of two welded ...
  • Rani S., Bala N., Verma R.C., 2012, Displacement field due ...
  • Malik M., Singh M., Singh J., 2013, Static deformation of ...
  • Debnath S. K., Sen S., 2013, Pattern of stress-strain accumulation ...
  • Godara Y., Sahrawat R. K., Singh M., 2014, Static deformation ...
  • Verma R.C., Rani S., Singh S. J., 2016, Deformation of ...
  • Pan E., 1990, Thermoelastic deformation of a transversely isotropic and ...
  • Ghosh M.K., Kanoria M., 2007, Displacements and stresses in composite ...
  • Hou P.F., Tong J., Xiong S.M., Hu J.F., 2012, Two-dimensional ...
  • Jacquey A.B., Cacace M., Blocher G., Wenderoth M. S., 2015, ...
  • Marin M., Florea O., Mahmoud S.R., 2015, A result regarding ...
  • Vashisth A.K., Rani K., Singh K., 2015, Quasi-static planar deformation ...
  • Naeeni M.R., Eskandari-Ghadi M., Ardalan A.A., Rahimian M., Hayati Y., ...
  • Hayati Y., Eskandari-Ghadi M., Raoofian M., Rahimian M., Ardalan A.A., ...
  • Naeeni M.R., Eskandari-Ghadi M., Ardalan A.A., Pak R.Y.S., 2014, Asymmetric ...
  • Naeeni M.R., Ghadi M.E., Ardalan A.A., Sture S., Rahimian M., ...
  • Eskandari‐Ghadi M., Raoofian‐Naeeni M., Pak R.Y.S., Ardalan A.A., Morshedifard A., ...
  • Kordkheili H.M., Amiri G.G., Hosseini M., 2016, Axisymmetric analysis of ...
  • Nowacki W., 1966, Green’s functions for a thermoelastic medium (quasi-static ...
  • Cohen S.C., 1996, Convenient formulas for determining dip-slip fault parameters ...
  • Kato N., 2001, Simulation of seismic cycles of buried intersecting ...
  • Cattin R., Loevenbruck A., Pichon X.L., 2004, Why does the ...
  • Mitsui Y., Hirahara K., 2007, Two‐dimensional model calculations of earthquake ...
  • Mitsui Y., Hirahara K., 2008, Long-term slow slip events are ...
  • Kanda R.V., Simons M., 2012, Practical implications of the geometrical ...
  • Zakian P., Khaji N., Soltani M., 2017, A Monte Carlo ...
  • Lay T., Wallace T. C., 1995, Modern Global Seismology, Academic ...
  • Banerjee P.K., 1994, The Boundary Element Methods in Engineering, McGraw-Hill ...
  • Ben-Menahem A., Singh S. J., 1981, Seismic Waves and Sources, ...
  • Barber J.R., 2004, Elasticity, Kluwer academic publishers, New York. ...
  • Erdelyi A., 1954, Bateman Manuscript Project-Tables of Integral Transforms, McGraw ...
  • Ahrens T.J., 1995, Mineral Physics and Crystallography: A Handbook of ...
  • Aki K., Richards P.G., 1980, Quantitative Seismology: Theory and Methods, ...
  • Schapery R.A., 1962, Approximate methods of transform inversion for viscoelastic ...
  • Naeeni M.R., Campagna R., Eskandari-Ghadi M., Ardalan A.A.,2015, Performance comparison ...
  • Research Info Management

    Certificate | Report | من نویسنده این مقاله هستم

    اطلاعات استنادی این Paper را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

    Share this page

    More information about COI

    COI stands for "CIVILICA Object Identifier". COI is the unique code assigned to articles of Iranian conferences and journals when indexing on the CIVILICA citation database.

    The COI is the national code of documents indexed in CIVILICA and is a unique and permanent code. it can always be cited and tracked and assumed as registration confirmation ID.

    Support