ناشر تخصصی کنفرانس های ایران

لطفا کمی صبر نمایید

Publisher of Iranian Journals and Conference Proceedings

Please waite ..
Publisher of Iranian Journals and Conference Proceedings
Login |Register |Help |عضویت کتابخانه ها
Paper
Title

Two-Dimensional Elasticity Solution for Arbitrarily Supported Axially Functionally Graded Beams

Year: 1397
COI: JR_JSMA-10-4_003
Language: EnglishView: 139
This Paper With 15 Page And PDF Format Ready To Download

Buy and Download

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این Paper را که دارای 15 صفحه است به صورت فایل PDF در اختیار داشته باشید.
آدرس ایمیل خود را در کادر زیر وارد نمایید:

Authors

A Singh - Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati ۷۸۱۰۳۹, India
P Kumari - Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati ۷۸۱۰۳۹, India

Abstract:

First time, an analytical two-dimensional (2D) elasticity solution for arbitrarily supported axially functionally graded (FG) beam is developed. Linear gradation of the material property along the axis of the beam is considered. Using the strain displacement and constitutive relations, governing partial differential equations (PDEs) is obtained by employing Ressiner mixed variational principle. Then PDEs are reduced to two set of ordinary differential equations (ODEs) by using recently developed extended Kantorovich method. The set of 4n ODEs along the z-direction has constant coefficients. But, the set of 4n nonhomogeneous ODEs along x-direction has variable coefficients which is solved using modified power series method. Efficacy and accuracy of the present methodology are verified thoroughly with existing literature and 2D finite element solution. Effect of axial gradation, boundary conditions and configuration lay-ups are investigated. It is found that axial gradation influence vary with boundary conditions. These benchmark results can be used for assessing 1D beam theories and further present formulation can be extended to develop solutions for 2D micro or Nanobeams.  

Keywords:

Paper COI Code

This Paper COI Code is JR_JSMA-10-4_003. Also You can use the following address to link to this article. This link is permanent and is used as an article registration confirmation in the Civilica reference:

https://civilica.com/doc/999272/

How to Cite to This Paper:

If you want to refer to this Paper in your research work, you can simply use the following phrase in the resources section:
Singh, A and Kumari, P,1397,Two-Dimensional Elasticity Solution for Arbitrarily Supported Axially Functionally Graded Beams,https://civilica.com/doc/999272

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :

  • Nakamura T., Singh R., Vaddadi P., 2006, Effects of environmental ...
  • Barbero E., Cosso F., Campo F., 2013, Benchmark solution for ...
  • Adda-Bedia E., Bouazza M., Tounsi A., Benzair A., Maachou M., ...
  • Naebe M., Shirvanimoghaddam K., 2016, Functionally graded materials: A review ...
  • Sankar B., 2001, An elasticity solution for functionally graded beams, ...
  • Ding H., Huang D., Chen W., 2007, Elasticity solutions for ...
  • Zhong Z., Yu T., 2007, Analytical solution of a cantilever ...
  • Kapuria S., Bhattacharyya M., Kumar A., 2008, Bending and free ...
  • Kadoli R., Akhtar K., Ganesan N., 2008, Static analysis of ...
  • Nguyen T.K., Vo T.P., Thai H.T., 2013, Static and free ...
  • Pradhan K., Chakraverty S., 2014, Effects of different shear deformation ...
  • Sallai B., Hadji L., Daouadji T.H., Adda B., 2015, Analytical ...
  • Filippi M., Carrera E., Zenkour A., 2015, Static analyses of ...
  • Jing L.I., Ming P.J., Zhang W.P., Fu L.R., Cao Y.P., ...
  • Aldousari S., 2017, Bending analysis of different material distributions of ...
  • Ghumare S.M., Sayyad A.S., 2017, A new fifth-order shear and ...
  • Elishakoff I., Candan S., 2001, Apparently first closed-form solution for ...
  • Huang Y., Li X.F., 2010, A new approach for free ...
  • Giunta G., Belouettar S., Carrera E., 2010, Analysis of FGM ...
  • Sarkar K., Ganguli R., 2013, Closed-form solutions for non-uniform Euler-Bernoulli ...
  • Sarkar K., Ganguli R., 2014, Closed-form solutions for axially functionally ...
  • Li X.F., Kang Y.A., Wu J.X., 2013, Exact frequency equations ...
  • Tang A.Y., Wu J.X., Li X.F., Lee K., 2014, Exact ...
  • Nguyen N., Kim N., Cho I., Phung Q., Lee J., ...
  • Kukla S., Rychlewska J., 2016, An approach for free vibration ...
  • Huang Y., Rong H.W., 2017, Free vibration of axially inhomogeneous ...
  • Shahba A., Attarnejad R., Marvi M.T., Hajilar S., 2011, Free ...
  • Shahba A., Attarnejad R., Hajilar S., 2013, A mechanical-based solution ...
  • Shahba A., Rajasekaran S., 2012, Free vibration and stability of ...
  • Li S., Hu J., Zhai C., Xie L., 2013, A ...
  • Arefi M., Rahimi G. H., 2013, Nonlinear analysis of a ...
  • Giunta G., Belouettar S., Ferreira A., 2016, A static analysis ...
  • Arefi M., Zenkour A. M., 2017, Vibration and bending analysis ...
  • Arefi M., Zenkour A. M., 2017, Size-dependent vibration and bending ...
  • ZenkourA. M., Arefi M., Alshehri N. A., 2017, Size-dependent analysis ...
  • Arefi M., Zenkour A. M., 2016, A simplified shear and ...
  • Li X., Li L., Hu Y., Ding Z., Deng W., ...
  • Sayyad A.S., Ghugal Y.M., 2017, Bending, buckling and free vibration ...
  • Kapuria S., Kumari P., 2012, Multi-term extended Kantorovich method for ...
  • Kumari P., Kapuria S., Rajapakse R., 2014, Three-dimensional extended Kantorovich ...
  • Kumari P., Singh A., Rajapakse R., Kapuria S., 2017, Three-dimensional ...
  • Kapuria S., Dumir P., Jain N., 2004, Assessment of zigzag ...
  • ABAQUS/STANDARD, 2009, User’s Manual, Version: 6.9-1. ...
  • Research Info Management

    Certificate | Report | من نویسنده این مقاله هستم

    اطلاعات استنادی این Paper را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

    Share this page

    More information about COI

    COI stands for "CIVILICA Object Identifier". COI is the unique code assigned to articles of Iranian conferences and journals when indexing on the CIVILICA citation database.

    The COI is the national code of documents indexed in CIVILICA and is a unique and permanent code. it can always be cited and tracked and assumed as registration confirmation ID.

    Support