Publisher of Iranian Journals and Conference Proceedings

Please waite ..
Publisher of Iranian Journals and Conference Proceedings
Login |Register |Help |عضویت کتابخانه ها
Paper
Title

A Nonlocal First Order Shear Deformation Theory for Vibration Analysis of Size Dependent Functionally Graded Nano beam with Attached Tip Mass: an Exact Solution

فصلنامه مکانیک جامد، دوره: 10، شماره: 1
Year: 1397
COI: JR_JSMA-10-1_002
Language: EnglishView: 205
This Paper With 15 Page And PDF Format Ready To Download

Buy and Download

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این Paper را که دارای 15 صفحه است به صورت فایل PDF در اختیار داشته باشید.
آدرس ایمیل خود را در کادر زیر وارد نمایید:

Authors

M Ghadiri - Faculty of Engineering, Department of Mechanics, Imam Khomeini International University, Qazvin, Iran
A Jafari - Faculty of Engineering, Department of Mechanics, Imam Khomeini International University, Qazvin, Iran

Abstract:

In this article, transverse vibration of a cantilever nano- beam with functionally graded materials and carrying a concentrated mass at the free end is studied. Material properties of FG beam are supposed to vary through thickness direction of the constituents according to power-law distribution (P-FGM). The small scale effect is taken into consideration based on nonlocal elasticity theory of Eringen. The nonlocal equations of motion are derived based on Timoshenko beam theory in order to consider the effect of shear deformation and rotary inertia. Hamilton’s principle is applied to obtain the governing differential equation of motion and boundary conditions and they are solved applying analytical solution. The purpose is to study the effects of parameters such as tip mass, small scale, beam thickness, power-law exponent and slenderness on the natural frequencies of FG cantilever nano beam with a point mass at the free end. It is explicitly shown that the vibration behavior of a FG Nano beam is significantly influenced by these effects. The response of Timoshenko Nano beams obtained using an exact solution in a special case is compared with those obtained in the literature and is found to be in good agreement. Numerical results are presented to serve as benchmarks for future analyses of FGM cantilever Nano beams with tip mass.

Keywords:

Paper COI Code

This Paper COI Code is JR_JSMA-10-1_002. Also You can use the following address to link to this article. This link is permanent and is used as an article registration confirmation in the Civilica reference:

https://civilica.com/doc/999319/

How to Cite to This Paper:

If you want to refer to this Paper in your research work, you can simply use the following phrase in the resources section:
Ghadiri, M and Jafari, A,1397,A Nonlocal First Order Shear Deformation Theory for Vibration Analysis of Size Dependent Functionally Graded Nano beam with Attached Tip Mass: an Exact Solution,https://civilica.com/doc/999319

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :

  • Iijima S., 1991, Helical microtubules of graphitic carbon, Nature 354: ...
  • Zhang Y. Q., Liu G. R., Wang J. S., 2004, ...
  • Eringen A. C., 1972, Nonlocal polar elastic continua, International Journal ...
  • Eringen A. C., 1983, On differential equations of nonlocal elasticity ...
  • Peddieson J., George R. B., Richard P. M., 2003, Application ...
  • Aydogdu M., 2009, A general nonlocal beam theory: its application ...
  • Phadikar J. K., Pradhan S. C., 2010, Variational formulation and ...
  • Pradhan S. C., Murmu T., 2010, Application of nonlocal elasticity ...
  • Ghorbanpour Arani A., Kolahchi R., Rahimi pour H., Ghaytani M., ...
  • Ansari R., Gholami R., Sahmani S., 2011, Free vibration analysis ...
  • microbeams based on the strain gradient Timoshenko beam theory, Composite ...
  • Ebrahimi F., Salari E., 2015, Thermo-mechanical vibration analysis of nonlocal ...
  • Srinath L. S., Das Y. C., 1967, Vibration of beams ...
  • Goel R. P., 1976, Free vibrations of a beam mass ...
  • Saito H., Otomi K., 1979, Vibration and stability of elastically ...
  • Lau J. H., 1981, Fundamental frequency of a constrained beam ...
  • Lauara P. A. A., Filipich C., Cortinez V. H., 1987, ...
  • Liu W. H., Yeh F. H., 1987, Free vibration of ...
  • Maurizi M. J., Belles P. M., 1991, Natural frequencies of ...
  • Maurizi M. J., Belles P. M., 1991, Natural frequencies of ...
  • Bapat C.N., Bapat C., 1987, Natural frequencies of a beam ...
  • Oz H. R., 2000, Calculation of the natural frequencies of ...
  • Low K.H.,1991, A comprehensive approach for the Eigen problem of ...
  • Kosmatka J.B., 1995, An improved two-node finite element for stability ...
  • Lin H.P., Chang S.C.,2005, Free vibration analysis of multi-span beams ...
  • Ferreira A.J.M., Fasshauer G.E., 2006, Computation of natural frequencies of ...
  • Ruta P., 2006, The application of Chebyshev polynomials to the ...
  • Laura P.A.A., Pombo J.A., Susemihl E.A., 1974, A note on ...
  • Goel R.P., 1976, Free vibrations of a beam-mass system with ...
  • Parnell L.A., Cobble M.H., 1976, Lateral displacements of a vibrating ...
  • To C.W.S., 1982, Vibration of a cantilever beam with a ...
  • Grant D.A., 1978, The effect of rotary inertia and shear ...
  • Brunch Jr J.C., Mitchell T.P., 1987, Vibrations of a mass-loaded ...
  • Abramovich H., Hamburger O., 1991, Vibration of a cantilever Timoshenko ...
  • Abramovich H., Hamburger O., 1992,Vibration of a uniform cantilever Timoshenko ...
  • Rossi R.E., Laura P.A.A., Avalos D.R., Larrondo H., 1993, Free ...
  • Salarieh H., Ghorashi M., 2006, Free vibration of Timoshenko beam ...
  • Wu J.S., Hsu S.H., 2007, The discrete methods for free ...
  • Lin H.Y., Tsai Y.C., 2007, Free vibration analysis of a ...
  • Necla T., 2016, Nonlinear vibration of nanobeam with attached mass ...
  • Simsek M., 2010, Fundamental frequency of functionally graded beams by ...
  • Pradhan K.k., Chakraverty S., 2014, Effects of different shear deformation ...

Research Info Management

Certificate | Report | من نویسنده این مقاله هستم

اطلاعات استنادی این Paper را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

Scientometrics

The specifications of the publisher center of this Paper are as follows:
Type of center: دانشگاه دولتی
Paper count: 7,569
In the scientometrics section of CIVILICA, you can see the scientific ranking of the Iranian academic and research centers based on the statistics of indexed articles.

Share this page

More information about COI

COI stands for "CIVILICA Object Identifier". COI is the unique code assigned to articles of Iranian conferences and journals when indexing on the CIVILICA citation database.

The COI is the national code of documents indexed in CIVILICA and is a unique and permanent code. it can always be cited and tracked and assumed as registration confirmation ID.

Support