A Cuckoo Search Optimization based Method for Feature Selection
Publish place: 3rd International Conference on Soft Computing
Publish Year: 1398
نوع سند: مقاله کنفرانسی
زبان: English
View: 389
متن کامل این Paper منتشر نشده است و فقط به صورت چکیده یا چکیده مبسوط در پایگاه موجود می باشد.
توضیح: معمولا کلیه مقالاتی که کمتر از ۵ صفحه باشند در پایگاه سیویلیکا اصل Paper (فول تکست) محسوب نمی شوند و فقط کاربران عضو بدون کسر اعتبار می توانند فایل آنها را دریافت نمایند.
- Certificate
- من نویسنده این مقاله هستم
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
CSCG03_162
تاریخ نمایه سازی: 14 فروردین 1399
Abstract:
Today, Feature Selection, as a technique to improve classification methods, has attracted the attention of many computer scientists. As the methods of extracting data is improving every day, we encounter matrices with huge dimension and it will affect the performance of processing. Hence, reducing the number of features by choosing the best subset of all features, will affect the algorithms performance. Finding the best subset by comparing all possible subsets, is an intractable process, as a solution, heuristic methods can help to find the near-optimal solutions with an acceptable complexity. In this paper, we introduce a novel Feature Selection technique which selects the most informative features and omits the redundant or irrelevant ones. Our method is embedded in CS (Cuckoo Search). The performance of our method is evaluated on two classification benchmarks: Vowel, and Wine. Comparing the results with four state-of-the-art methods, demonstrates its superiority over them.
Keywords:
Authors
Z. Shojaee
Department of Computer Science, Yazd University, Yazd, Iran
S.A Shahzadeh Fazeli
Department of Computer Science, Yazd University, Yazd, Iran.
E. Abbasi
Department of Computer Science, Yazd University, Yazd, Iran.
F. Adibnia
Department of Computer Engineering, Yazd University, Yazd, Iran.