3D Optimization of Gear Train Layout Using Particle Swarm Optimization Algorithm
Publish Year: 1399
نوع سند: مقاله ژورنالی
زبان: English
View: 559
This Paper With 18 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JACM-6-4_009
تاریخ نمایه سازی: 11 تیر 1399
Abstract:
Optimization of the volume/weight in the gear train is of great importance for industries and researchers. In this paper, using the particle swarm optimization algorithm, a general gear train is optimized. The main idea is to optimize the volume/weight of the gearbox in 3 directions. To this end, the optimization process based on the PSO algorithm occurs along the height, length, and width of the gearbox to achieve the smallest possible gearbox. The constraints are divided into three types named geometrical, design and control constraints. The optimization process is presented for two and three-stage gear trains and by choosing different values for the gear ratio, input power and hardness of gears. The practical graphs for the optimum value of the weight/volume and all necessary design parameters of gearbox such as the number of stages, position, modulus of gears, face width of gears, and diameter of shafts are also presented. The results are validated by comparing with the results reported in the previous publications.
Keywords:
Optimal gearbox layout , Weight/volume optimization , Particle swarm optimization (PSO) , Gear train
Authors
Mehrdad Hoseini Asl
Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, ۸۵۱۴۱۴۳۱۳۱, Iran |Modern Manufacturing Technologies Research Center, Najafabad Branch, Islamic Azad University, Najafabad, ۸۵۱۴۱۴۳۱۳۱, Iran
Javad Jafari Fesharaki
Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, ۸۵۱۴۱۴۳۱۳۱, Iran |Modern Manufacturing Technologies Research Center, Najafabad Branch, Islamic Azad University, Najafabad, ۸۵۱۴۱۴۳۱۳۱, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :