Fundamental Solution and Study of Plane Waves in Bio-Thermoelastic Medium with DPL

Publish Year: 1399
نوع سند: مقاله ژورنالی
زبان: English
View: 351

This Paper With 19 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_JSMA-12-2_003

تاریخ نمایه سازی: 11 تیر 1399

Abstract:

The fundamental solution of the system of differential equations in bio-thermoelasticity with dual phase lag (DPL) in case of steady oscillations in terms of elementary function is constructed and basic property is established. The tissue is considered as an isotropic medium and the propagation of plane harmonic waves is studied. The Christoffel equations are obtained and modified with the thermal as well as bio thermoelastic coupling parameters. These equations explain the existence and propagation of three waves in the medium. Two of the waves are attenuating longitudinal waves and one is non-attenuating transverse wave. The thermal property has no effect on the transverse wave. The velocities and attenuating factors of longitudinal waves are computed for a numerical bioheat transfer model with phase lag. The variation with frequency, thermal parameters, blood perfusion parameter and phase lag parameter are presented graphically.   Also the reflection of plane wave from a stress free isothermal boundary of isotropic bio-thermoelastic half space in the context of DPL theory of thermoelasticity is studied. The amplitude ratios of various reflected waves are obtained and these amplitude ratios are further used to obtain the energy ratios of various reflected waves. These energy ratios are function of the angle of incidence and bio-thermoelastic properties of the medium. The expressions of energy ratios have been computed numerically for a particular model to show the effect of Poisson ratio, blood perfusion rate and phase lag parameters.

Authors

R Kumar

Department of Mathematics, Kurukshetra University, Kurukshetra - ۱۳۶۱۱۹ Haryana, India

A.K Vashishth

Department of Mathematics, Kurukshetra University, Kurukshetra - ۱۳۶۱۱۹ Haryana, India

S Ghangas

Department of Mathematics, MDSD Girls College, Ambala City – ۱۳۴۰۰۲ Haryana, India

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Hetnarski R.B., 1964, Solution of the coupled problem of thermoelasticity ...
  • Hetnarski R.B., 1964, The fundamental solution of the coupled thermoelasticity ...
  • Svanadze M., 1996, The fundamental solution of the oscillation equations ...
  • Ciarletta M., Scalia A., Svanadze M., 2007, Fundamental solution in ...
  • Svanadze M., 2005, Fundamental solution in the theory of consolidation ...
  • Svanadze M., 2004, Fundamental solutions of the equations of the ...
  • Scarpetta E., Svanadze M., Zampoli V., 2014, Fundamental solutions in ...
  • Svanadze M., 2016, Fundamental solutions in the theory of elasticity ...
  • Svanadze M., 2018, Fundamental solutions in the linear theory of ...
  • Sharma S., Sharma K., Rani Bhargava R., 2013, Wave motion ...
  • Sharma S., Sharma K., Rani Bhargava R., 2014, Plane waves ...
  • Kumar R., Sharma K. D., Garg S. K., 2015, Fundamental ...
  • Kumar R., Vohra R., Gorla M.G., 2016, Some considerations of ...
  • Kumar R., Devi S., Sharma V., 2015, Plane wave and ...
  • Kumar R., Kansal T., 2011, Fundamental solution in the theory ...
  • Kumar R., Kansal T., 2012, Fundamental solution in the theory ...
  • Kumar R., Kaur M., 2016, Plane waves and fundamental solutions ...
  • Xu F., Lu T., 2011, Introduction to Skin Biothermomechanics and ...
  • Shen W.S., Zhang J., 2005, Modeling and numerical simulation of ...
  • Shen W.S., Zhang J., Yang F.Q., 2005, Skin thermal injury ...
  • Li X., Zhong Y., Jazar R., Subic A., 2014, Thermal-mechanical ...
  • Li X., Zhong Y., Subic A., Jazar R., Smith J., ...
  • Xu F., Seffen K., Lu T., 2008, Non-Fourier analysis of ...
  • Li X., Zhong Y., Smith J., Gu C., 2017, Non-Fourier ...
  • Pennes H.H., 1948, Analysis of tissue and arterial blood temperatures ...
  • Cattaneo C., 1958, A form of heat conduction equation which ...
  • Vernotte P., 1958, Les paradoxes de la theorie continue de ...
  • Tzou D.Y., 1995, A unified field approach for heat conduction ...
  • Shrama M.D., 2008, Wave propagation in thermoelastic saturated porous medium, ...
  • Kupradze V.D., Gegelia T.G., Basheleishvili M.O., Buruchuladze T.V., 1979, Three ...
  • Panji M., Kamalian M., Asgari Marnani J., Jafari M. K., ...
  • Panji M., Kamalian M., Asgari Marnani J., Jafari M. K., ...
  • Panji M., Ansari B., 2017, Transient SH-wave scattering by the ...
  • Achenbach J.D., 1973, Wave Propagation in Elastic Solids, North-Holland Publishing, ...
  • Sharma K., Marin M., 2013, Effect of distinct conductive and ...
  • Shrama K., 2012, Reflection of plane waves in thermodiffusive elastic ...
  • Kumar R., Gupta V., 2013, Reflection and transmission of plane ...
  • Saini R., 2015, Reflection/refraction at the interface of an elastic ...
  • Kumar R., Vohra R., Gorla M.G., 2016, Reflection of plane ...
  • نمایش کامل مراجع