پیش بینی نفوذپذیری ازتخلخل، سطح ویژه و اشباع آب کاهش نیافتنی با استفاده از شبکه های عصبی مصنوعی

Publish Year: 1389
نوع سند: مقاله کنفرانسی
زبان: Persian
View: 1,845

This Paper With 12 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

TOIL01_097

تاریخ نمایه سازی: 4 اسفند 1389

Abstract:

یکی از خواص بسیار مهم مخازن نفت قابلیت نفوذ یک سیال مانندنفت گاز و یا آب در آن است هرچه نفوذپذیری بالاتر باشد نفتو گاز راحت تر در سنگ مخزن جریان می یابند و درنتیجه استخراج نفت با سرعت بیشتر و هزینه کمتری امکان پذیر است با توجه به اهمیت این موضوع دراین مقاله به بررسی روابط بین مشخصات مختلف محیط تخلخل از قبیل تخلخل سطح ویژه و آب کاهش نیافتنی با نفوذ پذیری می پردازیم، هدف ارائه یک ابزار پیش بینی با استفاده از شبکه عصبی مصنوعی برای براورد کردن نفوذ پذیری مطلق در سنگهای کربناته می باشد که در شبکه عصبی مصنوعی مورد طراحی الگوریتم اموزشی پس انتشار خطا و تابع اموزش تنظیم خودکار برای شبکه و شبکه چند لایه با دولایه مخفی درساختار شبکه مورد استفاده قرارگرفت. مطالعات انجام داده شده نشان داده مقادیر نفوذ پذیری بدست امده از شبکه کاملا با داده هایی که ازتحلیل ازمایشگاهی بدست امده اند مطابقت دارد.

Authors

احسان اسماعیل پور مطلق

کارشناس ارشد مهندسی حفاری و استخراج نفت عضو باشگاه پژوهشگران جوان

مجید سجادیان

کارشناس ارشد مهندسی حفاری و استخراج نفت

سیدمصطفی مختاری سنگدهی

دانشجوی کارشناسی ارشد مهندسی حفاری و بهره برداری نفت

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • دکترمنهاج، "شبکه های عصبی مصنوعی"انتشارات امیرکبیر ...
  • b.basbug and Z. karpyan, "estimation of permeability from porosity with ...
  • Babadagli, T., and AL-Salmi, S.:A review of permeability prediction methods ...
  • Nelson, P. : , P erme ability-Poro sity Relationships in ...
  • TRAINLM, Performance goal met. h = 0.0035 h = 0.0043 ...
  • نمایش کامل مراجع