Efficiency study with undesirable inputs and outputs in DEA
Publish place: Journal of Fuzzy Extension & Applications، Vol: 1، Issue: 1
Publish Year: 1399
Type: Journal paper
Language: English
View: 758
This Paper With 9 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
JR_JFEA-1-1_007
Index date: 4 April 2021
Efficiency study with undesirable inputs and outputs in DEA abstract
Data Envelopment Analysis (DEA) is one of the well-known methods for calculating efficiency, determining efficient boundaries and evaluating efficiency that is used in specific input and output conditions. Traditional models of DEA do not try to reduce undesirable outputs and increase undesirable inputs. Therefore, in this study, in addition to determining the efficiency of Decision-Making Units (DMU) with the presence of some undesirable input and output components, its effect has also been investigated on the efficiency limit. To do this, we first defined the appropriate production possibility set according to the problem assumptions, and then we presented a new method to determine the unfavorable performance of some input and output components in decision-making units. And we determined the impact of unfavorable inputs and outputs on the efficient boundary. We also showed the model result by providing examples for both unfavorable input and output states and solving them and determining the efficiency score and driving them to the efficient boundary by plotting those boundaries.
Efficiency study with undesirable inputs and outputs in DEA Keywords:
Efficiency study with undesirable inputs and outputs in DEA authors
Abbasali Monzeli
Department of Mathematics, Islamic Azad University of Central Tehran Branch, Iran.
Behrouz Daneshian
Islamic Azad University of Central Tehran Branch, Iran.
Gasem Tohidi
Islamic Azad University of Central Tehran Branch, Iran.
Masud Sanei
Islamic Azad University of Central Tehran Branch, Iran.
Shabnam Razavian
Islamic Azad University of Central Tehran Branch, Iran.
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :