A multi-objective optimization approach for a nurse scheduling problem considering the fatigue factor (case study: Labbafinejad Hospital)
Publish Year: 1399
نوع سند: مقاله ژورنالی
زبان: English
View: 388
This Paper With 28 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_APRIE-7-4_005
تاریخ نمایه سازی: 17 فروردین 1400
Abstract:
The current study, according to ergonomic factors, aims to model the nurses’ work shift scheduling problem. Considering the urgent needs of the hospitals in providing better services to patients, it seems significant to take the preferences of nurses in scheduling shifts into account. Therefore, in this paper, a multi-objective model of nurses’ scheduling with emphasis on reducing their fatigue during the career shift is presented. To evaluate the outputs of the model, two numerical instances in small and large sizes with real data of Labbafinejad Hospital were designed in 18-person and 90-person wards. To solve a small size problem, a comprehensive standard decision method is employed, the results of which showed that nurses take their most rest during the night shift and in the middle of their working hours to reduce fatigue. Furthermore, due to the NP-Hard nature of the nurses' scheduling problem, in the problem of the 90-person ward, MOPSO and NSGA II algorithms are applied based on the design of a new chromosome. Using the TOPSIS method and entropy weighting method shows that the designed NSGA II algorithm can solve the nurses’ scheduling problem of Labbafinejad Hospital faster and better.
Keywords:
Authors
Niloofar Khalili
Department of Industrial Management, Firoozkooh Branch, Islamic Azad University, Firoozkooh, Iran.
Parisa Shahnazari Shahrezaei
Department of Industrial Engineering, Firoozkooh Branch, Islamic Azad University, Firoozkooh, Iran.
Amir Gholm Abri
Department of Mathematics, Firoozkooh Branch, Islamic Azad University, Firoozkooh, Iran.
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :