Prediction of Nonlinear Time History Deflection of Scallop Domes by Neural Networks
Publish place: 3rd National Conference on Spatial Structures
Publish Year: 1390
Type: Conference paper
Language: English
View: 2,129
This Paper With 9 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
Export:
Document National Code:
NCSS03_016
Index date: 21 July 2011
Prediction of Nonlinear Time History Deflection of Scallop Domes by Neural Networks abstract
This study deals with predicting nonlinear time history deflection of scallop domes subject to earthquake loading employing neural network technique. Scallop domes have alternate ridged and grooves that radiate from the centre. There are two main types of scallop domes, lattice and continuous, which the latticed type of scallop domes is considered in the present paper. Due to the large number of the structural nodes and elements of scallop domes, nonlinear time history analysis of such structures is time consuming. In this study to reduce the computational burden radial basis function (RBF) neural network is utilized. The type of inputs of neural network models seriously affects the computational performance and accuracy of the network. Two types of input vectors: cross-sectional properties and natural periods of the structures can be employed for neural network training. In this paper the most influential natural periods of the structure are determined by adaptive neuro-fuzzy inference system (ANFIS) and then are used as the input vector of the RBF network. Results of illustrative example demonstrate high performance and computational accuracy of RBF network.
Prediction of Nonlinear Time History Deflection of Scallop Domes by Neural Networks Keywords:
earthquake , nonlinear behaviour , radial basis function , adaptive neuro-fuzzy inference system , neural network
Prediction of Nonlinear Time History Deflection of Scallop Domes by Neural Networks authors
r Kamyab
۱Department of Civil Engineering, University of Kerman, Kerman, Iran
s Gholizadeh
۲The Iranian Academic Center for Education, Culture and Research, Kerman, Iran
e Salajeghe
۳Department of Civil Engineering, Urmia University, Urmia, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :