Comparative Study of LS-SVM, RVM and ELM for Modelling of Electro-Discharge Coating Process
Publish place: International Journal of Advanced Design and Manufacturing Technology، Vol: 14، Issue: 1
Publish Year: 1400
نوع سند: مقاله ژورنالی
زبان: English
View: 403
This Paper With 14 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_ADMTL-14-1_002
تاریخ نمایه سازی: 13 اردیبهشت 1400
Abstract:
The Electro-discharge coating process is an efficient method for improvement of the surface quality of the parts used in molds. In this process, Material Transfer Rate (MTR), an average Layer Thickness (LT) are important factors, and tuning the input process parameters to obtain the desired value of them is a crucial issue. Due to the wide range of the input parameters and nonlinearity of this system, the establishment of a mathematical model is a complicated mathematical problem. Although many efforts have been made to model this process, research is still ongoing to improve the modeling of this process. To this end, in the present study, three powerful machine learning algorithms, namely, Relevance Vector Machine (RVM), Extreme Learning Machine (ELM) and the Least Squares Support Vector Machine (LS-SVM) that have not been used to model this process, have been used. The values R۲ above ۰.۹۹ for the training data and above ۰.۹۷ for the test data show the high accuracy and generalization capability degree related to the LS-SVM models, which can be applied for the input parameters tuning in order to attain a preferred value of the outputs.
Keywords:
Authors
Morteza Taheri
Department of Mechanical Engineering, Birjand University of Technology, Birjand, Iran
Nader Mollayi
Department of Computer Engineering, Birjand University of Technology, Birjand, Iran
Seyyed Amin Seyyedbarzani
Department of Mechanical Engineering, Birjand University of Technology, Birjand, Iran
Abolfazl Foorginejad
Department of Mechanical Engineering, Birjand University of Technology, Birjand, Iran
Vahide Babaiyan
Department of Computer Engineering, Birjand University of Technology, Birjand, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :