Comparative Study of LS-SVM, RVM and ELM for Modelling of Electro-Discharge Coating Process

Publish Year: 1400
نوع سند: مقاله ژورنالی
زبان: English
View: 403

This Paper With 14 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_ADMTL-14-1_002

تاریخ نمایه سازی: 13 اردیبهشت 1400

Abstract:

The Electro-discharge coating process is an efficient method for improvement of the surface quality of the parts used in molds. In this process, Material Transfer Rate (MTR), an average Layer Thickness (LT) are important factors, and tuning the input process parameters to obtain the desired value of them is a crucial issue. Due to the wide range of the input parameters and nonlinearity of this system, the establishment of a mathematical model is a complicated mathematical problem. Although many efforts have been made to model this process, research is still ongoing to improve the modeling of this process. To this end, in the present study, three powerful machine learning algorithms, namely, Relevance Vector Machine (RVM), Extreme Learning Machine (ELM) and the Least Squares Support Vector Machine (LS-SVM) that have not been used to model this process, have been used. The values R۲ above ۰.۹۹ for the training data and above ۰.۹۷ for the test data show the high accuracy and generalization capability degree related to the LS-SVM models, which can be applied for the input parameters tuning in order to attain a preferred value of the outputs.

Authors

Morteza Taheri

Department of Mechanical Engineering, Birjand University of Technology, Birjand, Iran

Nader Mollayi

Department of Computer Engineering, Birjand University of Technology, Birjand, Iran

Seyyed Amin Seyyedbarzani

Department of Mechanical Engineering, Birjand University of Technology, Birjand, Iran

Abolfazl Foorginejad

Department of Mechanical Engineering, Birjand University of Technology, Birjand, Iran

Vahide Babaiyan

Department of Computer Engineering, Birjand University of Technology, Birjand, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Jameson, E. C., Electrical Discharge Machining: Society of Manufacturing Engineers, ...
  • Ho, K., Newman, S., State of the Art Electrical Discharge ...
  • Kumar, S., Singh, R., Singh, T., and Sethi, B., Surface ...
  • Janmanee, P., Muttamara, A., Surface Modification Of Tungsten Carbide by ...
  • Beri, N., Maheshwari, S., Sharma, C., and Kumar, A., Technological ...
  • Das, A.,Misra, J. P., Experimental investigation On Surface Modification of ...
  • Naik, S. K., Study the Effect of Compact Pressure of ...
  • Hwang, Y. L., Kuo, C. L., and Hwang, S. F., ...
  • Patowari, P. K., Saha, P., and Mishra, P., Artificial Neural ...
  • Provost, F., Kohavi, R., Glossary of Terms, Journal of Machine ...
  • Hastie, T., Tibshirani, R., and Friedman, J., Overview of supervised ...
  • Tyagi, R.,Kumar, S., Kumar, V., Mohanty, S., Das, A.,and Mandal, ...
  • Sahu, A. K., Mahapatra, S. S., and Chatterjee, S., Optimization ...
  • Vapnik, V., The Nature of Statistical Learning Theory: Springer Science ...
  • Bishop, C. M., Pattern Recognition And Machine Learning: Springer, 2006 ...
  • Meyer, D., Leisch, F., and Hornik, K., The Support Vector ...
  • Cristianini, N., Shawe-Taylor, J., An Introduction to Support Vector Machines ...
  • Parrella, F., Online Support Vector Regression, Master's Thesis, Department of ...
  • Kecman, V., Learning and Soft Computing: Support Vector Machines, Neural ...
  • Suykens, J. A., Van Gestel, T., and De Brabanter, J., ...
  • Wang, H., Hu, D., Comparison of SVM and LS-SVM for ...
  • Ding, S., Zhao, H., Zhang, Y., Xu, X., and Nie, ...
  • Huang, G. B., Zhu, Q. Y., and Siew, C. K., ...
  • Sun, Z. L., Choi, T. M., Au, K .F., and ...
  • Huang, G. B., Learning Capability and Storage Capacity of Two-Hidden-Layer ...
  • Liang, N. Y., Huang, G. B., Saratchandran, P., and Sundararajan, ...
  • Wan, C., Xu, Z., Pinson, P., Dong, Z. Y., and ...
  • Caesarendra, W., Widodo, A., and Yang, B. S., Application of ...
  • Widodo, A., Kim, E. Y., Son, J. D., Yang, B. ...
  • Wang, X., Ye, M., and Duanmu, C., Classification of Data ...
  • Jiang, J., Li, M., Jing, X., and Lv, B., Research ...
  • MacKay, D. J., Bayesian Interpolation, Neural Computation, Vol. 4, No. ...
  • Thayananthan, A., Relevance Vector Machine Based Mixture of Experts, Cambridge: ...
  • Tipping, M. E., Faul, A. C., Fast Marginal Likelihood Maximisation ...
  • Tipping, M. E., SPARSEBAYES V1. 1: A Baseline Matlab Implementation ...
  • Pelckmans, K., Suykens, J. A., Van Gestel, T., De Brabanter, ...
  • نمایش کامل مراجع