A New Method for Forecasting Uniaxial Compressive Strength of Weak Rocks

Publish Year: 1399
نوع سند: مقاله ژورنالی
زبان: English
View: 409

This Paper With 11 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_JMAE-11-2_012

تاریخ نمایه سازی: 21 اردیبهشت 1400

Abstract:

The uniaxial compressive strength of weak rocks (UCSWR) is among the essential parameters involved for the design of underground excavations, surface and underground mines, foundations in/on rock masses, and oil wells as an input factor of some analytical and empirical methods such as RMR and RMI. The direct standard approaches are difficult, expensive, and time-consuming, especially with highly fractured, highly porous, weak, and homogeneous rocks. Numerous endeavors have been made to develop indirect approaches of predicting UCSWR. In this research work, a new intelligence method, namely relevance vector regression (RVR), improved by the cuckoo search (CS) and harmony search (HS) algorithms is introduced to forecast UCSWR. The HS and CS algorithms are combined with RVR to determine the optimal values for the RVR controlling factors. The optimized models (RVR-HS and RVR-CS) are employed to the available data given in the open-source literature. In these models, the bulk density, Brazilian tensile strength test, point load index test, and ultrasonic test are used as the inputs, while UCSWR is the output parameter. The performances of the suggested predictive models are tested according to two performance indices, i.e. mean square error and determination coefficient. The results obtained show that RVR optimized by the HS model can be successfully utilized for estimation of UCSWR with R۲ = ۰.۹۹۰۳ and MSE = ۰.۰۰۳۱۲۰۳.

Authors

Hadi Fattahi

Department of Earth Sciences Engineering, Arak University of Technology, Arak, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Singh, R., Kainthola, A. and Singh, T. (2012). Estimation of ...
  • Armaghani, D.J., Mohamad, E.T., Momeni, E. and Narayanasamy, M.S. (2015). ...
  • Kahraman, S., Fener, M. and Kozman, E. (2012). Predicting the ...
  • Ghose A Empirical strength indices of Indian coals-an investigation. In: ...
  • Meulenkamp, F. and Grima, M.A. (1999). Application of neural networks ...
  • Singh, V., Singh, D. and Singh, T. (2001). Prediction of ...
  • Gokceoglu, C. and Zorlu, K. (2004). A fuzzy model to ...
  • Sonmez, H., Tuncay, E. and Gokceoglu, C. (2004). Models to ...
  • Fener, M., Kahraman, S., Bilgil, A. and Gunaydin, O. (2005). ...
  • Kılıç, A. and Teymen, A. (2008). Determination of mechanical properties ...
  • Dehghan, S., Sattari, G., Chelgani, S.C. and Aliabadi, M. (2010). ...
  • Cevik, A., Sezer, E.A., Cabalar, A.F. and Gokceoglu, C. (2011). ...
  • Yagiz, S., Sezer, E. and Gokceoglu, C. (2012). Artificial neural ...
  • Minaeian, B. and Ahangari, K. (2013). Estimation of uniaxial compressive ...
  • Mishra, D. and Basu, A. (2013). Estimation of uniaxial compressive ...
  • Yesiloglu-Gultekin, N., Gokceoglu, C. and Sezer, E.A. (2013). Prediction of ...
  • Aboutaleb, S., Behnia, M., Bagherpour, R. and Bluekian, B. (2018). ...
  • Tipping, M.E. (2001). Sparse Bayesian learning and the relevance vector ...
  • Nisha, M.G., Pillai, G. (2013). Nonlinear model predictive control with ...
  • Qin, Y. and Wang, F. (2011). Tunneling-induced ground surface settlement ...
  • Gholami, R., Moradzadeh, A., Maleki, S., Amiri, S. and Hanachi, ...
  • Lou, J., Jiang, Y., Shen, Q. and Wang, R. (2018). ...
  • Tipping ME The relevance vector machine. In: Advances in neural ...
  • Geem, Z.W. (2009). Music-inspired harmony search algorithm: theory and applications, ...
  • Moh’d Alia, O. and Mandava, R. (2011). The variants of ...
  • Yuan, X., Zhao, J., Yang, Y. and Wang, Y. (2014). ...
  • Jaberipour, M. and Khorram, E. (2010). Two improved harmony search ...
  • Yang, X.S. and Deb, S. (2010). Engineering optimisation by cuckoo ...
  • Valian, E., Mohanna, S. and Tavakoli, S. (2011). Improved cuckoo ...
  • Yildiz, A.R. (2013). Cuckoo search algorithm for the selection of ...
  • Mohamad, E.T., Armaghani, D.J., Momeni, E. and Abad, S.V.A.N.K. (2015). ...
  • Fattahi, H. (2016). Application of improved support vector regression model ...
  • Fattahi H. and Moradi, A. (2017). Risk Assessment and Estimation ...
  • Fattahi, H. (2016). Adaptive neuro fuzzy inference system based on ...
  • Fattahi, H. (2017). Risk assessment and prediction of safety factor ...
  • Fattahi, H. (2017). Applying soft computing methods to predict the ...
  • Fattahi, H. and Moradi, A. (2018). A new approach for ...
  • Babanouri, N. and Fattahi, H. (2018). Constitutive modeling of rock ...
  • نمایش کامل مراجع