Investigating and Ranking Blasting Patterns to Reduce Ground Vibration using Soft Computing Approaches and MCDM Technique

Publish Year: 1399
نوع سند: مقاله ژورنالی
زبان: English
View: 272

This Paper With 17 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_JMAE-11-3_017

تاریخ نمایه سازی: 21 اردیبهشت 1400

Abstract:

The blasting method is one of the most important operations in most open-pit mines that has a priority over the other mechanical excavation methods due to its cost-effectiveness and flexibility in operation. However, the blasting operation, especially in surface mines, imposes some environmental problems including the ground vibration as one of the most important ones. In this work, an evaluation system is provided to study and select the best blasting pattern in order to reduce the ground vibration as one of the hazards in using the blasting method. In this work, ۴۵ blasting patterns used for the Sungun copper mine are studied and evaluated to help determine the most suitable and optimum blasting pattern for reducing the ground vibration. Additionally, due to the lack of certainty in the nature of ground and the analyses relating to this drilling system, in the first step, a combination of the imperialist competitive algorithm and k-means algorithm is used for clustering the measured data. In the second step, one of the multi-criteria decision-making methods, namely TOPSIS (Technique for Order Performance by Similarity to Ideal Solution), is used for the final ranking. Finally, after evaluating and ranking the studied patterns, the blasting pattern No. ۲۷ is selected. This pattern is used with the properties including a hole diameter of ۱۶.۵ cm, number of holes of ۱۳, spacing of ۴ m, burden of ۳ m, and ammonium nitrate fuel oil of ۱۱۰۰ Kg as the most appropriate blasting pattern leading to the minimum ground vibration and reduction of damages to the environment and structures constructed around the mine.

Authors

D. Mohammadi

Department of Mining, Ahar Branch, Islamic Azad University Ahar, Ahar, Iran

R. Mikaeil

Department of Mining engineering, Urmia University of Technology, Urmia, Iran

J. Abdollahei Sharif

Department of Mining engineering, Urmia University, Urmia, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Asghari O, Hezarkhani A (2008) Applying discriminant analysis to separate ...
  • Armaghani, D.J., Momeni, E., Abad, S.V.A.N.K. and Khandelwal, M. (2015). ...
  • Armaghani, D.J., Hasanipanah, M., Amnieh, H.B. and Mohamad, E.T. (2018). ...
  • Aryafar, A., Mikaeil, R., Haghshenas, S.S. and Haghshenas, S.S. (2018). ...
  • Atashpaz-Gargari, E. and Lucas, C. (2007, September). Imperialist competitive algorithm: ...
  • Arthur, C.K., Temeng, V.A. and Ziggah, Y.Y. (2019). Novel approach ...
  • Ataei, M. and Baydokhti, H.A. (2019). An experimental study of ...
  • Azimi, Y., Khoshrou, S.H. and Osanloo, M. (2019). Prediction of ...
  • Dehghani, H. and Shafaghi, M. (2017). Prediction of blast-induced flyrock ...
  • Performance evaluation of gang saw using hybrid ANFIS-DE and hybrid ANFIS-PSO algorithms [مقاله ژورنالی]
  • Faradonbeh, R.S. and Monjezi, M. (2017). Prediction and minimization of ...
  • Faradonbeh, R.S., Haghshenas, S.S., Taheri, A. and Mikaeil, R. (2019). ...
  • Hasanipanah, M., Monjezi, M., Shahnazar, A., Armaghani, D.J. and Farazmand, ...
  • Hasanipanah, M., Naderi, R., Kashir, J., Noorani, S.A. and Qaleh, ...
  • Haghshenas, S.S., Haghshenas, S.S., Mikaeil, R., Sirati Moghadam, P. and ...
  • Haghshenas, S.S., Faradonbeh, R.S., Mikaeil, R., Haghshenas, S.S., Taheri, A., ...
  • Hezarkhani A (2006) Petrology of the intrusive rocks within the ...
  • Hosseini, S.A., Asghari, O. Simulation of geometallurgical variables through stepwise ...
  • Hosseini, S.M., Ataei, M., Khalokakaei, R., Mikaeil, R. and Haghshenas, ...
  • Hwang, C.L. and Yoon, K. (1981). Methods for multiple attribute ...
  • Lloyd, S.P. (1982). Least squares quantization in PCM. IEEE transactions ...
  • Monjezi, M., Hasanipanah, M. and Khandelwal, M. (2013). Evaluation and ...
  • Monjezi, M., Baghestani, M., Faradonbeh, R.S., Saghand, M.P. and Armaghani, ...
  • Performance evaluation of chain saw machines for dimensional stones using feasibility of neural network models [مقاله ژورنالی]
  • Mikaeil, R., Haghshenas, S.S. and Hoseinie, S.H. (2018). Rock penetrability ...
  • Mikaeil, R., Bakhshinezhad, H., Haghshenas, S.S. and Ataei, M. (2019). ...
  • National Iranian Copper Industries Company (NICICo) – Sungun Copper Project ...
  • Nguyen, H. (2019). Support vector regression approach with different kernel ...
  • Nguyen, H. and Bui, X.N. (2019). Predicting blast-induced air overpressure: ...
  • Noori, A.M., Mikaeil, R., Mokhtarian, M., Haghshenas, S.S. and Foroughi, ...
  • Norouzi Masir, R., Ataei, M. and Mottahedi, A. (2020). Risk ...
  • Shahnazar, A., Rad, H.N., Hasanipanah, M., Tahir, M.M., Armaghani, D.J. ...
  • Saghatforoush, A., Monjezi, M., Faradonbeh, R.S. and Armaghani, D.J. (2016). ...
  • Salemi, A., Mikaeil, R. and Haghshenas, S.S. (2018). Integration of ...
  • Shang, Y., Nguyen, H., Bui, X.N., Tran, Q.H. and Moayedi, ...
  • Singh, T.N. and Singh, V. (2005). An intelligent approach to ...
  • Yari, M., Bagherpour, R. and Jamali, S. (2017). Development of ...
  • Zhang, X., Nguyen, H., Bui, X.N., Tran, Q. H., Nguyen, ...
  • نمایش کامل مراجع