Experimental evaluation and estimation of frictional behavior of polymer matrix composites
Publish place: Journal of Computational and Applied Research in Mechanical Engineering، Vol: 10، Issue: 2
Publish Year: 1400
نوع سند: مقاله ژورنالی
زبان: English
View: 242
This Paper With 11 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JCARME-10-2_015
تاریخ نمایه سازی: 11 خرداد 1400
Abstract:
As the fiber-reinforced polymer matrix composites give good strength and can work in rigorous environmental conditions, nowadays, more focus is given to study the behavior of these materials under different operating conditions. Due to the environmental concern, the focus on the natural fiber reinforced polymer matrix composite is enhancing both in research and industrial sectors. Currently, the focus has been given to unifying solid fillers with the polymer matrix composite to improve their mechanical and tribo properties. Aligned to this, the present work discusses the effect of various weight fractions of fillers (Flyash, SiC, and graphite) on the frictional behavior of natural fiber (cotton) polyester matrix composites. The specimen prepared with a hand lay-up process followed by compression molding. A plan of experiments, response surface technique, was used to obtain a response in an organized way by varying load, speed, and sliding distance. The test results reveal that different weight concentration of fillers has a considerable result on the output. The frictional behavior of materials evaluated by general regression and artificial neural network. The validation experiment effects show the estimated friction by using the artificial neural network was closer to experimental values compare to the regression models.
Keywords:
Authors
Hiral Parikh
Navrachana University, Vasna Bhayli road
Piyush Gohil
The M S University, Vadodara
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :