Performance measure and tool for benchmarking metaheuristic optimization algorithms
Publish Year: 1400
نوع سند: مقاله ژورنالی
زبان: English
View: 289
This Paper With 11 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JACM-7-3_045
تاریخ نمایه سازی: 12 مرداد 1400
Abstract:
In the last decade, many new algorithms have been proposed to solve optimization problems. Most of them are meta-heuristic algorithms. The issue of accurate performance measure of algorithms is still under discussion in the scientific community. Therefore, a new scoring strategy via a new benchmark is proposed. The idea of this new tool is to determine a score, a measure of efficiency taking into account both the end value of the optimization and the convergence speed. This measure is based on an aggregate of statistical results of different optimization problems. These problems are judiciously chosen to cover as broad a spectrum of resolution configurations as possible. They are defined by combinations of several parameters: dimensions, objective functions and evaluation limit on dimension ratios. Aggregation methods are chosen and set in order to make the problem weight relevant according to the computed score. This scoring strategy is compared to the CEC one thanks to the results of different algorithms: PSO, CMAES, Genetic Algorithm, Cuttlefish and simulated annealing.
Keywords:
Authors
François Schott
Percipio Robotics, Maison des Microtechniques ۱۸, rue Alain Savary, Besançon, France
Dominique Chamoret
ICB UMR ۶۳۰۳, CNRS, UBFC, UTBM, Belfort, France
Thomas Baron
FEMTO-ST institute, Univ. Bourgogne Franche-Comté, CNRS, ENSMM Time and frequency dept., Besançon, France
Sébastien Salmon
My-OCCS, Besançon, France
Yann Meyer
Univ. Savoie Mont Blanc, SYMME, FR-۷۴۰۰۰ Annecy, France
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :