Evaluating the Efficiency of Coal Loading Process by Simulating the Process of Loading onto the Face Conveyor with a Shearer with an Additional Share
Publish Year: 1400
نوع سند: مقاله ژورنالی
زبان: English
View: 142
This Paper With 6 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJE-34-7_025
تاریخ نمایه سازی: 12 مرداد 1400
Abstract:
This paper analyses the possibility of increasing the efficiency of loading the destroyed rock mass into the face scraper conveyor by the lagging screw actuator of the shearer in the process of coal mining in the complex mechanized treatment faces of coal mines. It was taken into account that the most significant influence on the loading efficiency of coal is exerted by the dimensions of the cross-sectional area of the loading window, the distance between the screw and conveyor and the height of the bottom of the conveyor. Non-traditional technical solutions are proposed that reduce the negative impact of the gap between the screw and the conveyor on the efficiency of coal loading by the lagging screw actuator of shearers and increase the degree of filling of the conveyor groove. Technical solutions contribute to the formation of a rational section of the cargo flow in the trough of the downhole conveyor and, therefore, increase its productivity. The results of modeling the process of loading coal onto the face conveyor by an auger actuator with an additional loading device are presented. Evaluation of the effectiveness of the proposed constructive technical solutions for the interface unit in the loading area confirmed an increase of ۲.۹۴ times the maximum capacity of the screw executive body for loading coal onto the face conveyor while ۲.۷ times less specific energy consumption during loading.
Authors
N. Linh
Ha Noi University of Mining and Geology, Vietnam
V. Gabov
Saint-Petersburg Mining University, Saint-Petersburg, Russia
Y. Lykov
Saint-Petersburg Mining University, Saint-Petersburg, Russia
R. Urazbakhtin
Saint-Petersburg Mining University, Saint-Petersburg, Russia
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :