A Generalized Identification of Joint Structural State and ‎Unknown Inputs Using Data Fusion MKF-UI

Publish Year: 1400
نوع سند: مقاله ژورنالی
زبان: English
View: 269

This Paper With 7 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_JACM-7-0_017

تاریخ نمایه سازی: 20 مرداد 1400

Abstract:

The classical Kalman filter (KF) can estimate the structural state online in real time. However, the classical KF presupposes that external excitations are known. The existing methods of Kalman filter with unknown inputs (KF-UI) have limitations that require observing the acceleration response at the excitation point or assuming the unknown force. To surmount the above defects, an innovative modal Kalman filter with unknown inputs (MKF-UI) is proposed in this paper. Modal transformation and modal truncation are used to reduce the dimensionality of the structural state, and the accelerations at the excitation positions do not need to observe. Besides, the proposed MKF-UI does not require the assumption of unknown external excitation. Therefore, the proposed approach is suitable for the generalized identification of dynamic structural states and unknown loadings. The effectiveness and feasibility of the proposed identification approach are ascertained by some numerical simulation examples.

Authors

Lijun Liu

Department of Civil Engineering, Xiamen University, No.۱۸۲ Daxue Road, Xiamen, ۳۶۱۰۰۵, China

Jiajia Zhu

Department of Civil Engineering, Xiamen University, No.۱۸۲ Daxue Road, Xiamen, ۳۶۱۰۰۵, China

Ying Lei

Department of Civil Engineering, Xiamen University, No.۱۸۲ Daxue Road, Xiamen, ۳۶۱۰۰۵, China‎

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Azam, S.E., Chatzi, E., Papadimitriou, C., A dual Kalman filter ...
  • Liu, L.J., Zhu, J.J., Su, Y., Lei Y., Improved Kalman filter with ...
  • Lei, Y., Lu, J.B., Huang, J.S., Chen, S.Y., A general synthesis of identification ...
  • Chen, Z., Chan, T.H.T., Yu, L., Comparison of regularization methods for moving force identification with ill-posed ...
  • Aucejo, M., De Smet, O., An optimal Bayesian regularization for force ...
  • Sanchez, J., Benaroya, H., Review of force reconstruction techniques, Journal ...
  • Uhl, T., The inverse identification problem and its technical application, ...
  • Pan, C.D., Yu, L., Liu, H.L., Chen, Z.P., Luo, W.F., Moving force identification based ...
  • Feng, W., Li, Q.F., Lu, Q.H., Force localization and reconstruction based on ...
  • Chan, T.H.T., Yu, L., Law, S.S., Yung, T.H., Moving force identification studies, ...
  • Majidi, M.A., Hsieh, C.S., Yazdi, H.S., Kalman Filter Reinforced by Least Mean Square for ...
  • Wu, A.L., Loh, C.H., Yang, J.N., Weng, J.H., Chen, C.H., ...
  • Pan, S.W., Su, H.Y., Wang, H., Chu J., The study ...
  • Lin, D.C., Input estimation for nonlinear systems, Inverse Problem in ...
  • Zhang, C.D., Xu, Y.L., Structural damage identification via response reconstruction under ...
  • Zhang, C.D., Xu, Y.L., Optimal multi-type sensor placement for response and ...
  • [۱۷] He, J., Zhang, X.X., Dai, N.X., An improved Kalman filter for joint ...
  • Lourens, E., Reynders, E., Roeck, G. De, Degrande, G., Lombaert, ...
  • Li, Y., Luo, Y.Z., Wan, H.P., Yun, C.B., Shen, Y.B., Identification of ...
  • ‎[۲۰] Zhi, L.H., Yu, P., Li, Q.S., Chen, B., Fang, ...
  • Maes, K., Gillijns, S., Lombaert, G., A smoothing algorithm for ...
  • Sun, H., Feng, D.M., Liu, Y., Feng, M.Q., Statistical regulari ...
  • Lei, Y., Chen, F., Zhou H., A two-stage and two-step ...
  • Naets F., Cuadrado J., Desmet W., Stable force identification in ...
  • نمایش کامل مراجع