Applicability of the common equations of state for modeling hydrogen liquefaction processes in Aspen HYSYS

Publish Year: 1400
نوع سند: مقاله ژورنالی
زبان: English
View: 449

This Paper With 17 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_GPJU-9-1_002

تاریخ نمایه سازی: 23 مرداد 1400

Abstract:

Liquid hydrogen will likely play a significant role in the future of energy as its applications are growing fast. Due to the low efficiency of the existing liquefaction plants, many studies are dedicated to the liquefaction processes. The accuracy of the simulations crucially depends on the fluid package and prediction of thermodynamic properties. Four common equations of state implemented in Aspen HYSYS used for hydrogen liquefaction, including PR, MBWR, SRK, and BWRS, are investigated to find their accuracy for estimating volumetric and calorimetric properties, that are essential for precise simulation of hydrogen liquefaction processes. Results show that MBWR is the best choice for hydrogen liquefaction processes, which are simulated by Aspen HYSYS. MBWR predicts thermodynamic properties of hydrogen and parahydrogen very well, in the whole range of temperature and pressure typically met in the liquefaction processes. The MBWR performs well in predicting enthalpy of ortho-para conversion too. Although PR performs better than SRK and BWRS, none of them yields reliable data in low temperatures, so they could not be applied for liquefaction processes. However, they may lead to desirable results for processes that experience higher temperatures range. An innovative, simplified hydrogen liquefaction cycle is developed to be able to capture the mere effect of EOS on essential performance parameters of the liquefaction cycles such as SEC and COP. Applying PR and MBWR to the developed cycle shows that PR compared to MBWR leads to ۱۰% and ۴% deviation in SEC and COP, respectively.

Authors

Hamed Rezaie Azizabadi

Faculty of Mechanical Engineering, K.N. Toosi University of Technology, Tehran, Iran

Masoud Ziabasharhagh

Faculty of Mechanical Engineering, K.N. Toosi University of Technology, Tehran, Iran

Mostafa Mafi

Faculty of Mechanical Engineering, Imam Khomeini International University, Qazvin, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Abudour, A. M., Mohammad, S. A., Robinson Jr, R. L., ...
  • Ahmadi, S., Mirghaed, M. R., & Roshandel, R. (۲۰۱۴). Performance ...
  • Ansarinasab, H., Mehrpooya, M., & Mohammadi, A. (۲۰۱۷). Advanced exergy ...
  • Asadnia, M., & Mehrpooya, M. (۲۰۱۷). A novel hydrogen liquefaction ...
  • Bai-Gang, S., Dong-Sheng, Z., & Fu-Shui, L. (۲۰۱۲). A new ...
  • Belkadi, M., & Smaili, A. (۲۰۱۸). Thermal analysis of a ...
  • Benedict, M., George B. Webb, and Louis C. Rubin. (۱۹۴۰). ...
  • Berstad, D. O., Stang, J. H., & Nekså, P. (۲۰۰۹). ...
  • Cardella, U., Decker, L., & Klein, H. (۲۰۱۷). Economically viable ...
  • Cardella, U., Decker, L., Sundberg, J., & Klein, H. (۲۰۱۷). ...
  • Ebrahimi, A., Ghorbani, B., & Ziabasharhagh, M. (۲۰۲۰). Pinch and ...
  • Farkas, A. (۱۹۳۵). Orthohydrogen, parahydrogen and heavy hydrogen ...
  • Feyzi, F., Seydi, M., & Alavi, F. (۲۰۱۰). Crossover Peng-Robinson ...
  • Frey, K., Augustine, C., Ciccolini, R. P., Paap, S., Modell, ...
  • Ghanbari, M., Ahmadi, M., & Lashanizadegan, A. (۲۰۱۷). A comparison ...
  • Ghorbani, B., Hamedi, M.-H., Shirmohammadi, R., Hamedi, M., & Mehrpooya, ...
  • Ghorbani, B., Mehrpooya, M., Aasadnia, M., & Niasar, M. S. ...
  • Gupta, R., Basile, A., & Veziroglu, T. N. (۲۰۱۶). Compendium ...
  • Haghtalab, A., Mahmoodi, P., & Mazloumi, S. H. (۲۰۱۱). A ...
  • Hammad, A., & Dincer, I. (۲۰۱۸). Analysis and assessment of ...
  • Hammer, M., Vist, S., Nordhus, H., Sperle, I., Owren, G., ...
  • Jacobsen, R. T., Leachman, J. W., Penoncello, S. G., & ...
  • Jacobsen, R. T., & Stewart, R. B. (۱۹۷۳). Thermodynamic properties ...
  • Jaubert, J.-N., Privat, R., Le Guennec, Y., & Coniglio, L. ...
  • Jensen, J., Stewart, R. G., Tuttle, W., & Brechna, H. ...
  • Jensen, J. B., & Skogestad, S. (۲۰۰۶). Optimal operation of ...
  • Krasae-in, S. (۲۰۱۴). Optimal operation of a large-scale liquid hydrogen ...
  • Krasae-in, S., Bredesen, A. M., Stang, J. H., & Neksa, ...
  • Krasae-In, S., Stang, J. H., & Neksa, P. (۲۰۱۰). Simulation ...
  • Le Guennec, Y., Lasala, S., Privat, R., & Jaubert, J.-N. ...
  • Le Guennec, Y., Privat, R., & Jaubert, J.-N. (۲۰۱۶). Development ...
  • Leachman, J. W., Jacobsen, R. T., Lemmon, E. W., & ...
  • Leachman, J. W., Jacobsen, R. T., Penoncello, S., & Lemmon, ...
  • Leachman, J. W., Jacobsen, R. T., Penoncello, S. G., & ...
  • Lin, H., & Duan, Y.-Y. (۲۰۰۵). Empirical correction to the ...
  • Lopez-Echeverry, J. S., Reif-Acherman, S., & Araujo-Lopez, E. (۲۰۱۷). Peng-Robinson ...
  • Matsuda, H., & Nagami, M. (۱۹۹۷). Study of large hydrogen ...
  • McCarty, R. D., Hord, J., & Roder, H. M. (۱۹۸۱). ...
  • Mehrpooya, M., Sadaghiani, M. S., & Hedayat, N. (۲۰۲۰). A ...
  • Myklebust, J. (۲۰۱۰). Techno-economic modelling of value chains based on ...
  • Nandi, T., & Sarangi, S. (۱۹۹۳). Performance and optimization of ...
  • Nasrifar, K. (۲۰۱۰). Comparative study of eleven equations of state ...
  • Nogal, F. D., Kim, J.-K., Perry, S., & Smith, R. ...
  • Noh, J., Fulgueras, A. M., Sebastian, L. J., Lee, H. ...
  • Nouri, M., Miansari, M., & Ghorbani, B. (۲۰۲۰). Exergy and ...
  • Ohlig, K., & Decker, L. (۲۰۱۴). The latest developments and ...
  • Pitzer, K. S., Lippmann, D. Z., Curl Jr, R., Huggins, ...
  • Qian, J.-W., Jaubert, J.-N., & Privat, R. (۲۰۱۳). Phase equilibria ...
  • Redlich, O., & Kwong, J. N. (۱۹۴۹). On the thermodynamics ...
  • Reid, R. C., Prausnitz, J. M., & Poling, B. E. ...
  • Rösler, H., van der Zwaan, B., Keppo, I., & Bruggink, ...
  • Sadaghiani, M. S., & Mehrpooya, M. (۲۰۱۷). Introducing and energy ...
  • Sadaghiani, M. S., Mehrpooya, M., & Ansarinasab, H. (۲۰۱۷). Process ...
  • Sadus, R. J. (۱۹۹۲). Influence of quantum effects on the ...
  • Sakoda, N., Shindo, K., Shinzato, K., Kohno, M., Takata, Y., ...
  • Seyam, S., Dincer, I., & Agelin-Chaab, M. (۲۰۲۰). Analysis of ...
  • Sherif, S., Zeytinoglu, N., & Veziroǧlu, T. (۱۹۹۷). Liquid hydrogen: ...
  • Skaugen, G., Berstad, D., & Wilhelmsen, Ø. (۲۰۲۰). Comparing exergy ...
  • Soave, G. (۱۹۷۲). Equilibrium constants from a modified Redlich-Kwong equation ...
  • Taleshbahrami, H., & Saffari, H. (۲۰۱۰). Optimization of the C۳MR ...
  • Thomas, R. J., Dutta, R., Ghosh, P., & Chowdhury, K. ...
  • Thomas, R. J., Ghosh, P., & Chowdhury, K. (۲۰۱۱). Role ...
  • Valenti, G., & Macchi, E. (۲۰۰۸). Proposal of an innovative, ...
  • Valenti, G., Macchi, E., & Brioschi, S. (۲۰۱۲). The influence ...
  • Van Wylen, S.-B. (۲۰۱۵). Fundamentals of thermodynamics ...
  • Verfondern, K. (۲۰۰۸). Safety considerations on liquid hydrogen (Vol. ۱۰): ...
  • Wilhelmsen, Ø., Aasen, A., Skaugen, G., Aursand, P., Austegard, A., ...
  • Yang, J.-H., Yoon, Y., Ryu, M., An, S.-K., Shin, J., ...
  • Yang, J. C., & Huber, M. L. (۲۰۰۸). Analysis of ...
  • Yin, L., & Ju, Y. (۲۰۲۰). Process optimization and analysis ...
  • Younglove, B. A. (۱۹۸۲). Thermophysical properties of fluids. I. Argon, ...
  • Yuksel, Y. E., Ozturk, M., & Dincer, I. (۲۰۱۷). Analysis ...
  • Zheng, J., Ye, J., Yang, J., Tang, P., Zhao, L., ...
  • Zhou, L., & Zhou, Y. (۲۰۰۱). Determination of compressibility factor ...
  • نمایش کامل مراجع