Image Restoration Using Two Dimensional Fast Euclidean Direction Search Based Adaptive Algorithm
Publish Year: 1383
Type: Conference paper
Language: English
View: 1,797
This Paper With 8 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
ICMVIP03_079
Index date: 14 October 2011
Image Restoration Using Two Dimensional Fast Euclidean Direction Search Based Adaptive Algorithm abstract
Least mean square (LMS) adaptive filters have been used in a wide range of one-dimensional signal processing applications. Recently adaptive filtering are presented that are based on the Euclidean Direction Search (EDS) method of optimization. The fast version of this class is called the Fast-EDS or FEDS algorithm. The FEDS based algorithms have a fast convergence rate and O(N) computational complexity. For two-dimensional image-processing applications there is two-dimensional least mean square (TDLMS) method. This paper discusses the results of applying a TDLMS, two dimensional normalized LMS and the new two dimensional fast euclidean direction search (TDFEDS) adaptive line enhancer for the Restoration of an image contaminated by noise. The results show that the TDFEDS algorithm can follow changes in image statistics and produces a very small amount of image distortion.
Image Restoration Using Two Dimensional Fast Euclidean Direction Search Based Adaptive Algorithm Keywords:
Image Restoration Using Two Dimensional Fast Euclidean Direction Search Based Adaptive Algorithm authors
Hassan Ghassemian
۱Department of Electrical Engineering, Tarbiat Modares University, Tehran, Iran
Mohammad Shams Esfand Abadi
۲Department of Electrical Engineering, Shahid Rajaee Teachers Training University
Ali Mahlooji Far۱
۱Department of Electrical Engineering, Tarbiat Modares University, Tehran, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :