Application of Bayesian Statistics in Hydraulic Flow Units Modeling and Permeability Prediction (A case study Carbonate Reservoir in SW Iran)

Publish Year: 1399
نوع سند: مقاله ژورنالی
زبان: English
View: 270

نسخه کامل این Paper ارائه نشده است و در دسترس نمی باشد

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_IJOGST-9-4_002

تاریخ نمایه سازی: 2 شهریور 1400

Abstract:

< p>The determination of rock types for petrophysical studies has a wide range of applications. It is widely used in drilling, production, and especially in the study and characterization of reservoirs. Zoning of flow units and permeability estimation is one of the challenging tasks of reservoir studies, which uses the integration of data from well logs and analysis of the core. In this study, a Bayesian theory-based statistical modeling method is proposed to identify hydraulic flow units in coreless wells using the concept of hydraulic flow unit and then permeability estimation. In the flow zone indicator (FZI) method, the formation is divided into five hydraulic flow units. In the Winland R۳۵ ethod, however, it is divided into four hydraulic flow units. The Bayesian statistical model divides the existing complex carbonate reservoir rock data into three hydraulic flow units with the most probability of similarity. The second and third hydraulic flow units have closer properties compared to the first hydraulic unit. The Bayesian method-based permeability estimation modeling has acceptable precision, and validation of its results with core data indicates a precision factor of ۰.۹۶. The findings of this study can help in better understanding of the concept of flow units and more effective estimation of the permeability of the rocks of the heterogeneous carbonate reservoir.

Authors

Arian Ahmadi

M.S. Student, Department of Petroleum Engineering, Omidiyeh Branch, Islamic Azad University, Omidiyeh, Iran

Mohammad Abdideh

Associate Professor, Department of Petroleum Engineering, Omidiyeh Branch, Islamic Azad University, Omidiyeh, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Amaefule, J.O., Altunbay, M., Tiab, D., Kersey, D.G., and Keelan, ...
  • Askari, A.A. and Behrouz, T., A Fully Integrated Method for ...
  • Assadi, A., Rahimpou-Bonab, H., and Kadkhodaie-Ilkhchi, R., Integrated Rock Typing ...
  • Chandra, V., Barnett, A., Corbett, P., Geiger, S., Wright, P., ...
  • Chitsazan, N., Nadiri, A.A., T. C., and Tsai, F., Prediction ...
  • Dezfoolian, M.A., Riahi, M.A., and Kadkhodaie, A., Conversion of ۳D ...
  • D''Windt. Adolfo, Quint.Edwin, Al-Saleh. Anwar, and Dashti. Qasem, Bayesian Based ...
  • Jodeyri-Agaii, R., Rahimpour-Bonab, H., Tavakoli, V., Kadkhodaie-Ilkhchi, R., and Yousefpour, ...
  • Kadkhodaie, R., Mousavi-Harami, R., Rezaee, R., Nabi-Bidhendi, M., and Kadkhodaie, ...
  • Lucia, F.J., Carbonate Reservoir Characterization, Springer, ۲۲۶p. ۱۹۹۹ ...
  • Nouri-Taleghani, M., Kadkhodaie-Ilkhchi, A., and Karimi-Khaledi, M., Determining Hydraulic Flow ...
  • Ranjbar-Karami, R., Kadkhodaie, A., and Shiri, M., A Modified Fuzzy ...
  • Sfidari, E., Kadkhodaie, A., Rahimpour-Bonab, H., and Soltani, B., A ...
  • Shirmohamadi, M., Kadkhodaie, A., Rahimpour-Bonab, H., and Faraji, M.A., Seismic ...
  • Xu, C., Heidari, Z., and Torres-Verdin, C., Rock Classification in ...
  • نمایش کامل مراجع