On lifting of biadjoints and lax algebras

Publish Year: 1397
نوع سند: مقاله ژورنالی
زبان: English
View: 288

This Paper With 30 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_CGASAT-9-1_003

تاریخ نمایه سازی: 23 شهریور 1400

Abstract:

Given a pseudomonad \mathcal{T} on a ۲-category \mathfrak{B} , if a right biadjoint \mathfrak{A}\to\mathfrak{B} has a lifting to the pseudoalgebras \mathfrak{A}\to\mathsf{Ps}\textrm{-}\mathcal{T}\textrm{-}\mathsf{Alg} then this lifting is also right biadjoint provided that \mathfrak{A} has codescent objects. In this paper, we give  general results on lifting of biadjoints. As a consequence, we get a biadjoint triangle theorem which, in particular, allows us to study triangles involving the ۲-category of lax algebras, proving analogues of the result described above. In the context of lax algebras, denoting by \ell :\mathsf{Lax}\textrm{-}\mathcal{T}\textrm{-}\mathsf{Alg} \to\mathsf{Lax}\textrm{-}\mathcal{T}\textrm{-}\mathsf{Alg} _\ell the inclusion, if R: \mathfrak{A}\to\mathfrak{B} is right biadjoint and has a lifting J: \mathfrak{A}\to \mathsf{Lax}\textrm{-}\mathcal{T}\textrm{-}\mathsf{Alg} , then \ell\circ J is right biadjoint as well provided that \mathfrak{A} has some needed weighted bicolimits. In order to prove such result, we study descent objects and lax descent objects. At the last section, we study direct consequences of our theorems in the context of the ۲-monadic approach to coherence.

Authors

Fernando Lucatelli Nunes

CMUC, Department of Mathematics, University of Coimbra, ۳۰۰۱-۵۰۱ Coimbra, Portugal.

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Barr, M., The point of the empty set, Cah. Topol. ...
  • Barr, M. and Wells, C., “Toposes, Triples and Theories”, Repr. ...
  • Benabou, J., Introduction to bicategories, Lecture Notes in Math. ۴۷ ...
  • Bird, G.J., Kelly, G.M., Power, A.J., and Street, R.H., Flexible ...
  • Blackwell, R., Kelly, G.M., and Power, A.J., Two-dimensional monad theory, ...
  • Börger, R., Tholen, W., Wischnewsky, M.B., and Wolff, H., Compact ...
  • Bourke, J., Two-dimensional monadicity, Adv. Math. ۲۵۲ (۲۰۰۴), ۷۰۸-۷۴۷ ...
  • Deligne, P., Action du groupe des tresses sur une categorie, ...
  • Dubuc, E., Adjoint triangles, Reports of the Midwest Category Seminar ...
  • Dubuc, E., Kan extensions in enriched category theory, Lecture Notes ...
  • Fujii, S., Katsumata, S., Melliès, P., Towards a formal theory ...
  • Gurski, N., “An algebraic theory of tricategories”, PhD Thesis, The ...
  • Hermida, C., Descent on ۲-fibrations and strongly regular ۲-categories, Appl. ...
  • Hermida, C., From coherent structures to universal properties, J. Pure ...
  • Janelidze, G., and Tholen, W., Facets of descent II, Appl. ...
  • Johnstone, P.T., Adjoint lifting theorems for categories of algebras, Bull. ...
  • Kelly, G.M., “Basic Concepts of Enriched Category Theory”, London Math. ...
  • Kelly, G.M., Elementary observations on ۲-categorical limits, Bull. Austral. Math. ...
  • Kelly, G.M. and Lack, S., On property-like structures, Theory Appl. ...
  • Kock, A., Monads for which structures are adjoint to units, ...
  • Lack, S., A coherent approach to pseudomonads, Adv. Math. ۱۵۲(۲) ...
  • Lack, S., Codescent objects and coherence, Special volume celebrating the ...
  • Lack, S., Icons, Appl. Categ. Structures ۱۸(۳) (۲۰۰۰), ۲۸۹-۳۰۷ ...
  • Lack, S., A ۲-categories companion, in “Towards Higher Categories”, Springer, ...
  • Le Creurer, I.J., Marmolejo, F., and Vitale, E.M., Beck’s theorem ...
  • Leinster, T., “Higher Operads, Higher Categories”, London Math. Soc. Lecture ...
  • Leinster, T., “Basic Category Theory”, Cambridge Studies in Advanced Mathematics ...
  • Lucatelli Nunes, F., On biadjoint triangles, Theory Appl. Categ. ۳۱(۹) ...
  • Lucatelli Nunes, F., Pseudo-Kan extensions and descent theory, arXiv:۱۶۰۶.۰۴۹۹۹ or ...
  • Marmolejo, F., Doctrines whose structure forms a fully faithful adjoint ...
  • Marmolejo, F., Distributive laws for pseudomonads, Theory Appl. Categ. ۵(۵) ...
  • Marmolejo, F. andWood, R.J., Coherence for pseudodistributive laws revisited, Theory ...
  • Power, A.J., A unified approach to the lifting of adjoints, ...
  • Power, A.J., A general coherence result, Special volume celebrating the ...
  • Power, A.J., Cattani, G.L., and Winskel, G., A representation result ...
  • Street, R.H., The formal theory of monads, J. Pure Appl. ...
  • Street, R.H., Fibrations and Yoneda’s lemma in a ۲-category, Category ...
  • Street, R.H., Limits indexed by category-valued ۲-functors, J. Pure Appl. ...
  • Street, R.H., Wischnewsky, M., Wolf, H., and Tholen, W., Semi-topological ...
  • Street, R.H., Fibrations in bicategories, Cah. Topol. Geom. Diver. Categ. ...
  • Street, R.H., Correction to: “Fibraer. Categ. ۲۸(۱) (۱۹۸۷), ۵۳-۵۶ ...
  • Street, R.H., Categorical structures, in the “Handbook of Algebra, Volume ...
  • Day, B. and Street, R., Monoidal bicategories and Hopf algebroids, ...
  • Street, R.H., Categorical and combinatorial aspects of descent theory, Appl. ...
  • Tholen, W., Adjungierte dreiecke, colimites und Kan-erweiterungen, Math. Ann. ۲۱۷(۲) ...
  • نمایش کامل مراجع