One-point compactifications and continuity for partial frames

Publish Year: 1396
نوع سند: مقاله ژورنالی
زبان: English
View: 170

This Paper With 32 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_CGASAT-7-1_003

تاریخ نمایه سازی: 23 شهریور 1400

Abstract:

Locally compact Hausdorff spaces and their one-point compactifications are much used in topology and analysis; in lattice and domain theory, the notion of continuity captures the idea of local compactness. Our work is located in the setting of pointfree topology, where lattice-theoretic methods can be used to obtain topological results.Specifically, we examine here the concept of continuity for partial frames, and compactifications of regular continuous such.Partial frames are meet-semilattices in which not all subsets need have joins.A distinguishing feature  of their study is that a small collection  of axioms of an elementary nature allows one to do much that is  traditional for frames or locales. The axioms are sufficiently general to include as examples \sigma-frames, \kappa-frames and frames.In this paper, we present the notion of a continuous partial frame by means of a suitable ``way-below'' relation; in the regular case this relation can be characterized using separating elements, thus avoiding any use of pseudocomplements (which need not exist in a partial frame). Our first main result is an explicit construction of a one-point compactification for a regular continuous partial frame using generators and relations.  We use strong inclusions to link continuity and one-point compactifications to least compactifications. As an application, we show that a one-point compactification of a zero-dimensional continuous partial frame is again zero-dimensional. We next consider arbitrary compactifications of regular continuous partial frames. In full frames, the natural tools to use are right and left adjoints of frame maps; in partial frames these are, in general, not available. This necessitates significantly different techniques to obtain largest and smallest elements of fibres (which we call balloons); these elements are then used to investigate the structure of the compactifications. We note that strongly regular ideals play an important r\^{o}le here. The paper concludes with a proof of the uniqueness of the one-point compactification.

Authors

John Frith

Department of Mathematics and Applied Mathematics, University of Cape Town, Private Bag Rondebosch, ۷۷۰۱, South Africa.

Anneliese Schauerte

Department of Mathematics and Applied Mathematics, University of Cape Town, Private Bag Rondebosch, ۷۷۰۱, South Africa.

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Adamek, J., Herrlich, H., and Strecker, G., "Abstract and Concrete ...
  • Baboolal, D., Conditions under which the least compactification of a ...
  • Baboolal, D., N-star compactifications of frames, Topology Appl. ۱۶۸ (۲۰۱۴), ...
  • Banaschewski, B., The duality of distributive sigma-continuous lattices, in: "Continuous ...
  • Banaschewski, B., Compactification of frames, Math. Nachr. ۱۴۹ (۱۹۹۰), ۱۰۵-۱۱۶ ...
  • Banaschewski, B., sigma-frames, unpublished manuscript, ۱۹۸۰. Available at http://mathcs.chapman.edu/CECAT/members/Banaschewski publications[۷] ...
  • Banaschewski, B. and Gilmour, C.R.A., Realcompactness and the cozero part ...
  • Banaschewski, B. and Gilmour, C.R.A., Cozero bases of frames, J. ...
  • Banaschewski, B. and Matutu, P., Remarks on the frame envelope ...
  • Erne, M. and Zhao, D., Z-join spectra of Z-supercompactly generated ...
  • Frith, J. and Schauerte, A., The Samuel compactification for quasi-uniform ...
  • Frith, J. and Schauerte, A., Uniformities and covering properties for ...
  • Frith, J. and Schauerte, A., Uniformities and covering properties for ...
  • Frith, J. and Schauerte, A., The Stone-Cech compactification of a ...
  • Frith, J. and Schauerte, A., Completions of uniform partial frames, ...
  • Frith, J. and Schauerte, A., Coverages give free constructions for ...
  • Gutierrez Garcia, J., Mozo Carollo, I., and Picado, J., Presenting ...
  • Johnstone, P.T., "Stone Spaces", Cambridge University Press, ۱۹۸۲ ...
  • Lee, S.O., Countably approximating frames, Commun. Korean Math. Soc. ۱۷(۲) ...
  • Mac Lane, S., "Categories for the Working Mathematician", Springer-Verlag, ۱۹۷۱ ...
  • Madden, J.J., -frames, J. Pure Appl Algebra ۷۰ (۱۹۹۱), ۱۰۷-۱۲۷ ...
  • Paseka, J., Covers in generalized frames, in: "General Algebra and ...
  • Paseka, J. and Smarda, B., On some notions related to ...
  • Picado, J. and Pultr, A., "Frames and Locales", Springer, ۲۰۱۲ ...
  • Walters, J.L., Compactifications and uniformities on sigma-frames, Comment. Math. Univ. ...
  • Zenk, E.R., Categories of partial frames, Algebra Universalis ۵۴ (۲۰۰۵), ...
  • Zhao, D., Nuclei on Z-frames, Soochow J. Math. ۲۲(۱) (۱۹۹۶), ...
  • Zhao, D., On Projective Z-frames, Canad. Math. Bull. ۴۰(۱) (۱۹۹۷), ...
  • Zhao, D., Closure spaces and completions of posets, Semigroup Forum ...
  • نمایش کامل مراجع