Management Demographic Characteristics, Auditor Choice and Earnings Quality: Empirical Evidence from Iran

Publish Year: 1398
نوع سند: مقاله ژورنالی
زبان: English
View: 312

This Paper With 12 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_AMFA-4-3_007

تاریخ نمایه سازی: 7 مهر 1400

Abstract:

Recent accounting and management literature shows that demographic character-istics of top management and corporate performance are related. Accordingly, using a two-stage least squares regression model (۲SLS), this study examines the relationship between some management demographic characteristics including CEO tenure, gender and level of education with earnings quality and auditor choice. Sample includes the ۴۲۰ firm-year observations from companies listed on the Tehran Stock Exchange during the years ۲۰۱۳ to ۲۰۱۷ and research hypothesis was tested using multivariate regression models. The results show a significant and positive association between managers education level and higher auditor quality choice. In addition, we find that firms with female directors in the composition of the board of directors and with higher education levels, have higher earnings quality. The current study is almost the first study which has been conducted in Iran, so the findings of the study not only extend the extant theoretical literature in developing countries including emerging capital market of Iran, but also help investors, capital market regulators and accounting standard setters to make in-formed decisions.

Keywords:

Demographic characteristics of management , auditor choice , earnings quality

Authors

Mehdi Safari Gerayli

Department of Accounting, Bandargaz Branch, Islamic Azad University, Bandargaz, Iran

Davood Hassanpour

Department of Accounting, Payame Noor University (PNU), Tehran, Iran

Hasan Valiyan

Department of management, Gorgan Branch, Islamic Azad University, Gorgan, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :