Iranian TEFL Graduates’ Conceptions of Measurement Error in Research: A Genealogical Narrative Inquiry
Publish Year: 1389
نوع سند: مقاله ژورنالی
زبان: English
View: 226
This Paper With 22 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJALS-2-1_004
تاریخ نمایه سازی: 3 آذر 1400
Abstract:
The aim of this study is to investigate Iranian TEFL graduates’ conception of measurement error in research. Adopting a sequential explanatory multi-method strategy (Borg, ۲۰۰۹), the researchers analyzed causal and temporal relations in the research narratives elicited from ۳۰ TEFL graduates. Gee’s (۱۹۸۶) framework for identifying narrative discourse units (lines, stanzas, and episodes) was adopted to investigate participants’ conceptions of logical orders in measure development algorithms and their knowledge of error sources. In addition, taking a narrative positivistic approach, the narratives were rated based on Optimal Matching Analysis (OMA). Finally in ‘continuous event history modeling’ phase of the study, Cox Proportional Regression Analysis showed how temporal markers in research narratives can be used to predict one’s knowledge of measure development in research design. The results suggest that researchers’ error-awareness and algorithmic knowledge correlate significantly with each other and constitute knowledge of measure development in general. The contribution of dimensionality and validity testing to this knowledge was also found to be statistically significant.
Keywords:
TEFL Research , Measurement Error , Narrative Positivism , Optimal Matching Analysis , Event History Modeling , Cox Proportional Regression Analysis , Algorithmic Knowledge
Authors
Azar Hosseini Fatemi
Ferdowsi University of Mashhad, Iran
Saeedeh Shamsaee
Ferdowsi University of Mashhad, Iran
Mohammad Ali Shams
Ferdowsi University of Mashhad, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :