Performance Improvement in Savonius Wind Turbine by Modification of Blade Shape
Publish place: Journal of Applied Fluid Mechanics، Vol: 15، Issue: 1
Publish Year: 1401
Type: Journal paper
Language: English
View: 222
This Paper With 9 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
JR_JAFM-15-1_009
Index date: 29 December 2021
Performance Improvement in Savonius Wind Turbine by Modification of Blade Shape abstract
Wind energy is one of the abundantly available renewable energy resources. Savonius vertical axis wind turbine is better suited for small scale power generation applications with many advantages. The turbine operates independent of wind direction with good starting torque and less noise. But, the power coefficient of the Savonius turbine is less than all other wind turbines. The shape of the turbine blades plays an important role in the performance of the turbine. In this present two-dimensional numerical study, an attempt has been made to improve the turbine performance by considering three types of blade shapes. The complete design details of the proposed new blade shapes are presented. The simulations are carried out using ANSYS Fluent 15.0 with SST K-ω turbulence model. The power coefficient of the modified blade is found to have increased by 20% compared to conventional blade shape. The effect of tip-speed-ratio on power coefficient has also been studied and reported.
Performance Improvement in Savonius Wind Turbine by Modification of Blade Shape Keywords:
Performance Improvement in Savonius Wind Turbine by Modification of Blade Shape authors
J. Ramarajan
Department of Mechanical Engineering, Indian Institute of Information Technology, Design and Manufacturing Kancheepuram Chennai - ۶۰۰۱۲۷, India
S. Jayavel
Department of Mechanical Engineering, Indian Institute of Information Technology, Design and Manufacturing Kancheepuram Chennai - ۶۰۰۱۲۷, India
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :