Haar Wavelet Method for Solving High-Order Differential Equations with Multi-Point Boundary Conditions
Publish Year: 1401
نوع سند: مقاله ژورنالی
زبان: English
View: 248
This Paper With 17 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JACM-8-2_012
تاریخ نمایه سازی: 28 دی 1400
Abstract:
In This paper, the developed Haar wavelet method for solving boundary value problems is described. As known, the orthogonal Haar basis functions are applied widely for solving initial value problems, but In this study, the method for solving systems of ODEs associated with multipoint boundary conditions is generalized in separated or non-separated forms. In this technique, a system of high-order boundary value problems of ordinary differential equations is reduced to a system of algebraic equations. The experimental results confirm the computational efficiency and simplicity of the proposed method. Also, the implementation of the method for solving the systems arising in the real world for phenomena in fluid mechanics and construction engineering approves the applicability of the approach for a variety of problems.
Keywords:
High-order differential equations , Separated and non-separated boundary conditions , Haar wavelets , Multi-point boundary value problems
Authors
Mohammad Heydari
Department of Mathematics, Yazd University, Yazd, Iran
Zakieh Avazzadeh
Laboratory for Intelligent Computing and Financial Technology, Department of Mathematical Science, Xi’an Jiaotong-Liverpool University, Suzhou ۲۱۵۱۲۳, Jiangsu, China
Narges Hosseinzadeh
University of Applied Science and Technology (UAST), Ghand Center, Karaj, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :