Optimal Promotional Effort Policy for Innovation Diffusion Model in a Fuzzy Environment

Publish Year: 1400
نوع سند: مقاله ژورنالی
زبان: Persian
View: 251

This Paper With 20 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_JITM-13-1_008

تاریخ نمایه سازی: 25 بهمن 1400

Abstract:

In today’s era when a substitute for almost every product is readily available, acceptance and adoption of a new product in a market requires substantial amount of promotion. Here we formulate and analyze policies for promoting sales of a product in a market through optimal control theory problems. The market is partitioned into various segments depending upon multifarious demands of customers and promotion of the product is done segment-wise. The aim is to maximize the profits keeping in mind the demand requirements and the available budget for promotion. In order to provide a realistic model, the total available budget is taken to be imprecise. The optimal control model with fuzzy parameter is converted into crisp form using necessity and possibility constraints, and thereafter solved by using Pontryagin Maximum principle. To illustrate this technique, a numerical example is also considered by discretizing the model. The analysis also gives a deep insight of how the promotional effort should be planned by the decision makers keeping in mind the financial constrains without hindering the promotional effort at the end of the planning period. This paper mirrors the real time situation that could be faced by any industry, including that of software development, where budgets may have variable components and promotion of products may vary according to different regions and markets. The experimental data reveals that profitability can still be maximized if real-life constraints are applied in promotional planning by any industry.

Authors

Chaudhary

Assistant Professor, Department of Mathematics, AIAS, Amity University, Noida, U.P.-۲۰۱۳۰۱, India.

Bali

Associate Professor, Lal Bahadur Shastri Institute of Management, Dwarka, New Delhi – ۱۱۰۰۷۵.

Mehta (Sharma)

Assistant Professor, Department of Mathematics, Shri Ram College of Commerce, University of Delhi, Delhi-۱۱۰۰۰۷, India.

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Aggarwal, K. K., Jaggi, C. K., & Kumar, A. (۲۰۱۲). ...
  • Bass, F. M. (۱۹۶۹). A new product growth model for ...
  • Campos, J. R., Assuncao, E., Silva, G.N., Lodwick, W.A., Teixeira, ...
  • Chanda, U., & Kumar, A. (۲۰۱۶). Optimisation of fuzzy EOQ ...
  • Cheng, C.H., Chen, Y.S., & Wub, Y.L. (۲۰۰۹). Forecasting innovation ...
  • Dubois, D., & Prade, H. (۱۹۸۸). Possibility Theory, Academic Press, ...
  • Dubois, D., & Prade, H. (۱۹۹۷). The three semantics of ...
  • Filev, D., & Angelov, P. (۱۹۹۲). Fuzzy Optimal Control, Fuzzy ...
  • Grosset, L., & Viscolani, B. (۲۰۰۵) Advertising for the introduction ...
  • Helmes, K., Schlosser, R., & Weber, M. (۲۰۱۳). Optimal advertising ...
  • Horsky, D., & Simmon, L. (۱۹۸۳). Advertising and diffusion of ...
  • Huang, J., Leng, M., & Liang, L. (۲۰۱۲). Recent developments ...
  • Jha, P.C., Chaudhary, K., & Kapur, P.K. (۲۰۰۹). Optimal advertising ...
  • Little, J.D.C., & Lodish, L.M. (۱۹۶۹). A media planning calculus, ...
  • Liu, B., & Iwamura, K. (۱۹۹۸a). Chance constrained programming with ...
  • Liu, B., & Iwamura, K. (۱۹۹۸b). A Note on chance ...
  • Maity, K., & Maiti, M. (۲۰۰۵). Numerical Approach of Multi-Objective ...
  • Maity, K., & Maiti, M. (۲۰۰۷). Possibility and necessity constraints ...
  • Mandal, S., Maity, K., Mondal, S., & Maiti, M. (۲۰۱۰). ...
  • Mehta, S., Chaudhary, K., & Kumar, V. (۲۰۲۰). Optimal Promotional ...
  • Optimal Control with Fuzzy Chance Constraints [مقاله ژورنالی]
  • Robinson, B., & Lakhani, C. (۱۹۷۵). Dynamic price models for ...
  • Rosen, J.B. (۱۹۶۸). Numerical solution of optimal control problems, Mathematics ...
  • Roul, J.N., Maity, K., Kar, S., & Maiti, M. (۲۰۱۵). ...
  • Zadeh, L.A. (۱۹۶۵). Fuzzy sets, Information and control, ۸, ۳۳۸–۳۵۳ ...
  • Zadeh, L.A. (۱۹۹۹). Fuzzy Sets as a basis for a ...
  • Zhu, Y. (۲۰۰۹). A Fuzzy Optimal Control Model, Journal of ...
  • Zhu, Y. (۲۰۱۱). Fuzzy Optimal Control for Multistage Fuzzy Systems, ...
  • نمایش کامل مراجع