Memristor Crossbar-Based Hardware Implementation of Type-۲ Fuzzy Membership Function and On-Chip Learning

Publish Year: 1400
نوع سند: مقاله ژورنالی
زبان: English
View: 259

This Paper With 9 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_IJE-34-9_016

تاریخ نمایه سازی: 10 اردیبهشت 1401

Abstract:

Utilizing fuzzy techniques, especially fuzzy type-۲, is one of the most widely used methods in machine learning to model uncertainty. In addition to algorithm provision, the hardware implementation capability, and proper performance in real-time applications are other challenges. The use of hardware platforms that have biological similarities and are comparable to human neural systems in terms of implementation volume has always been considered. Memristor is one of the emerging elements for the implementation of fuzzy logic based algorithms. In this element, by providing current and selecting the appropriate direction for the applied current, the resistance of the memristor (memristance) will increase or decrease. Various implementations of type-۱ fuzzy systems exist, but no implementation of type-۲ fuzzy systems has been done based on memristors. In this paper, memristor-crossbar structures are used to implement type-۲ fuzzy membership functions. In the proposed hardware, the membership functions can have any shape and resolution. Our proposed implementation of type-۲ fuzzy membership function has the potential to learn (On-Chip learning capability regardless of host system). Besides, the proposed hardware is analog and can be used as a basis in the construction of evolutionary systems. Furthermore, the proposed approach is applied to memristor emulator to demonstrate its correct operation.

Authors

S. Haghzad Klidbary

Department of Electrical and Computer Engineering, University of Zanjan, Zanjan, Iran

M. Javadian

Computer Department, Kermanshah University of Technology, Kermanshah, Iran

R. Omidi

Department of Electrical Engineering, University of Zanjan, Zanjan, Iran

R. P. R. Hasanzadeh

Department of Electrical Engineering, University of Guilan, Rasht, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Tanaka, K. and Wang, H.O., "Fuzzy control systems design and ...
  • Terano, T., Asai, K. and Sugeno, M., "Applied fuzzy systems, ...
  • Zadeh, L.A., Fu, K.-S. and Tanaka, K., "Fuzzy sets and ...
  • Srikrishna, A., Reddy, B.E. and Srinivas, V.S., Detection of lesion ...
  • John, R.I., Innocent, P.R. and Barnes, M., "Neuro-fuzzy clustering of ...
  • Ozen, T. and Garibaldi, J.M., "Investigating adaptation in type-۲ fuzzy ...
  • Figueroa, J., Posada, J., Soriano, J., Melgarejo, M. and Rojas, ...
  • Kim, D., " An implementation of fuzzy logic controller on ...
  • Klidbary, S.H., Shouraki, S.B. and Linares-Barranco, B., "Digital hardware realization ...
  • Hung, D.L., "Dedicated digital fuzzy hardware", IEEE Micro, Vol. ۱۵, ...
  • Chua, L.O. and Kang, S.M., "Memristive devices and systems", Proceedings ...
  • Chua, L., "Memristor-the missing circuit element", IEEE Transactions on Circuit ...
  • Strukov, D.B., Snider, G.S., Stewart, D.R. and Williams, R.S., "The ...
  • Waser, R. and Aono, M., Nanoionics-based resistive switching memories, in ...
  • Kuekes, P., "Material implication: Digital logic with memristors", in Memristor ...
  • Tarkhan, M., Maymandi-Nejad, M., Haghzad Klidbary, S. and Bagheri Shouraki, ...
  • Mouttet, B., " Proposal for memristors in signal processing", in ...
  • Amer, S., Madian, A.H. and Emara, A.S., " Memristor-based center-of-gravity ...
  • Merrikh-Bayat, F. and Shouraki, S.B., "Memristive neuro-fuzzy system", IEEE Transactions ...
  • Merrikh-Bayat, F., Shouraki, S.B. and Rohani, A., "Memristor crossbar-based hardware ...
  • Klidbary, S.H. and Shouraki, S.B., "A novel adaptive learning algorithm ...
  • Klidbary, S.H., Shouraki, S.B. and Afrakoti, I.E.P., "An adaptive efficient ...
  • Afrakoti, I.E.P., Shouraki, S.B., Bayat, F.M. and Gholami, M., "Using ...
  • Adhikari, S.P., Yang, C., Kim, H. and Chua, L.O., "Memristor ...
  • Hasan, R., Taha, T.M. and Yakopcic, C., "On-chip training of ...
  • Li, T., Duan, S., Liu, J., Wang, L. and Huang, ...
  • Alibart, F., Zamanidoost, E. and Strukov, D.B., "Pattern classification by ...
  • Karnik, N.N. and Mendel, J.M., "Introduction to type-۲ fuzzy logic ...
  • Karnik, N.N., Mendel, J.M. and Liang, Q., "Type-۲ fuzzy logic ...
  • Biolek, D., Di Ventra, M. and Pershin, Y.V., "Reliable spice ...
  • نمایش کامل مراجع