ARITHMETIC-BASED FUZZY CONTROL

Publish Year: 1396
نوع سند: مقاله ژورنالی
زبان: English
View: 146

This Paper With 16 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_IJFS-14-4_004

تاریخ نمایه سازی: 19 خرداد 1401

Abstract:

Fuzzy control is one of the most important parts of fuzzy theory for which several approaches exist. Mamdani uses \alpha-cuts and builds the union of the membership functions which is called the aggregated consequence function. The resulting function is the starting point of the defuzzification process. In this article, we define a more natural way to calculate the aggregated consequence function via arithmetical operators. Defuzzification is the optimum value of the resultant membership function. The left and right hand sides of the membership function will be handled separately. Here, we present a new ABFC (Arithmetic Based Fuzzy Control) algorithm based on arithmetic operations which use a new defuzzification approach. The solution is much smoother, more accurate, and much faster than the classical Mamdani controller.

Authors

Jozsef Dombi

Institute of Informatics, University of Szeged, Szeged, Hungary

Tamas Szepe

Department of Technical Informatics, University of Szeged, Szeged, Hungary

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • S. Assilian, Arti cial intelligence in the control of real dynamical ...
  • J. Dombi, Pliant arithmetics and pliant arithmetic operations, Acta Polytechnica ...
  • D. Driankov, H. Hellendoorn and M. Reinfrank, An introduction to ...
  • D. Dubois and H. Prade, Operations on fuzzy numbers, Int. ...
  • I., CRC Press, Boca Raton, FL, (۱۹۸۷), ۳{۳۹ ...
  • D. Dubois and H. Prade, Special issue on fuzzy numbers, ...
  • J. Intell. Systems, ۶ (۱۹۹۱), ۶۸۹{۶۹۷ ...
  • R. Fuller and R. Mesiar, Special issue on fuzzy arithmetic, ...
  • T. Jiang and Y. Li, Generalized defuzzi cation strategies and their ...
  • A. Kaufmann and M. M. Gupta, Introduction to fuzzy arithmetic: ...
  • A. Kaufmann and M. M. Gupta, Fuzzy mathematical models in ...
  • E. Mamdani, Application of fuzzy algorithms for control of simple ...
  • M. Mares, Computation over fuzzy quantities, CRC Press, Boca Raton, ...
  • M. Mizumoto and K. Tanaka, The four operations of arithmetic ...
  • M. Mizumoto and K. Tanaka, Algebraic properties of fuzzy numbers, ...
  • S. Nahmias, Fuzy variables, Fuzzy Sets and System, ۱ (۱۹۷۸), ...
  • H. T. Nguyen, A note on the extension principle for ...
  • A. Patel and B. Mohan, Some numerical aspects of center ...
  • S. Roychowdhury and B.-H.Wang, Cooperative neighbors in defuzzi cation, Fuzzy Sets ...
  • S. Roychowdhury and W. Pedrycz, A survey of defuzzi cation strategies, ...
  • Systems, ۱۶ (۲۰۰۱), ۶۷۹{۶۹۵ ...
  • A. Sakly and M. Benrejeb, Activation of trapezoidal fuzzy subsets ...
  • Q. Song and R. Leland, Adaptive learning defuzzi cation techniques and ...
  • M. Sugeno, Industrial Applications of Fuzzy Control, Elsevier Science Publishers, ...
  • W. Van Leekwijck and E. Kerre, Defuzzi cation: criteria and classi cation, ...
  • R. Yager and D. Filev, SLIDE: a simple adaptive defuzzi cation ...
  • R. C. Young, The algebra of many-valued quantities, Math. Ann., ...
  • L. A. Zadeh, The concept of a linquistic variable and ...
  • نمایش کامل مراجع