Support vector regression with random output variable and probabilistic constraints

Publish Year: 1396
نوع سند: مقاله ژورنالی
زبان: English
View: 168

This Paper With 18 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_IJFS-14-1_004

تاریخ نمایه سازی: 19 خرداد 1401

Abstract:

Support Vector Regression (SVR) solves regression problems based on the concept of Support Vector Machine (SVM). In this paper, a new model of SVR with probabilistic constraints is proposed that any of output data and bias are considered the random variables with uniform probability functions. Using the new proposed method, the optimal hyperplane regression can be obtained by solving a quadratic optimization problem. The proposedmethod is illustrated by several simulated data and real data sets for both models (linear and nonlinear) with probabilistic constraints.

Authors

Maryam Abaszade

Department of Statistics, Ferdowsi University of Mashhad, Mashhad, Iran

Sohrab Effati

Department of Applied Mathematics, Ferdowsi University of Mashhad, Mashhad, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • A. R. Arabpour and M. Tata, Estimating the parameters of ...
  • K. Bache and M. Lichman, UCI machine learning repository, Available ...
  • A. Ben-Tal, S. Bhadra, C. Bhattacharyya and J. S. Nath, ...
  • P. Bosch, J. Lopez, H. Ramirez and H. Robotham, Support ...
  • K. D. Brabanter, J. D. Brabanter, J. A. K. Suykens ...
  • E. Carrizosa, J. E. Gordillo and F. Plastria, Kernel support ...
  • E. Carrizosa, J. E. Gordillo and F. Plastria, Support vector ...
  • J. H. Chiang and P. Y. Hao, Support vector learning ...
  • H. Drucker, Ch. J. C. Burges, L. Kaufman, A. Smola ...
  • B. Efron, Bootstrap methods: Another look at the jackknife, Annals ...
  • A. Farag and R. M. Mohamed, Classification of multispectral data ...
  • Eng. Syst., (۲۰۰۳), ۴–۶ ...
  • J. B. Gao, S. R. Gunn, C. J. Harris and ...
  • P. Y. Hao and J. H. Chiang, A fuzzy model ...
  • H. P. Huang and Y. H. Liu, Fuzzy support vector ...
  • G. Huang, S. Song, C. Wu and K. You, Robust ...
  • R. K. Jayadeva, R. Khemchandani and S. Chandra, Twin support ...
  • Y. Jinglin, H. X. Li and H. Yong, A probabilistic ...
  • A. F. Karr, probability, Springer, New york, (۱۹۹۳), ۵۲–۷۴ ...
  • M. A. Kumar and M. Gopal, Least squares twin support ...
  • J. T. Y. Kwok, The evidence framework applied to support ...
  • G. R. G. Lanckriet, L. E. Ghaoui, Ch. Bhattacharyya and ...
  • Y. J. Lee and S. Y. Huang, Reduced support vector ...
  • H. Li, J. Yang, G. Zhang and B. Fan, Probabilistic ...
  • C. F. Lin and S. D. Wang, Fuzzy support vector ...
  • W. Y. Liu, K. Yue and M. H. Gao, Constructing ...
  • M. Lobo, L. Vandenberghe, S. Boyd and H. Lebret, Applications ...
  • O. L. Mangasarian, Nonlinear Programming, McGraw-Hill, New York, (۱۹۶۹), ۶۹–۷۵ ...
  • S. Mehrotra, On the implementation of a primal-dual interior point ...
  • X. Peng, TSVR: an efficient twin support vector machine for ...
  • J. C. Platt, Probabilistic outputs for support vector machines and ...
  • Z. Qi, Y. Tian and Y. Shi, Robust twin support ...
  • H. Sadoghi Yazdi, S. Effati and Z. Saberi, The probabilistic ...
  • P. K. Shivaswamy, Ch.Bhattacharyya and A.J.Smola, Second order cone programming ...
  • P. Sollich, Bayesian methods for support vector machines: evidence and ...
  • J. A. K. Suykens and J. Vandewalle, Least squares support ...
  • T. B. Trafalis and S. A. Alwazzi, Support vector regression ...
  • T. B. Trafalis and R. C. Gilbert, Robust classification and ...
  • URL http://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/regression.html ...
  • URL http://www.dcc.fc.up.pt/ ltorgo/Regression/DataSets.html ...
  • URL http://www.itl.nist.gov/div۸۹۸/strd/nls/nls_main.shtml ...
  • V. Vapnik, The nature of statistical learning theory, Springer-Verlag, New ...
  • V. Vapnik, S. Golowich and A. Smola, Support vector method ...
  • Y. Xu and L. Wang, A weighted twin support vector ...
  • Y. Xu, W. Xi, X. Lv and R. Guo, An ...
  • X. Yang, L. Tan and L. He, A robust least ...
  • نمایش کامل مراجع