REGION MERGING STRATEGY FOR BRAIN MRI SEGMENTATION USING DEMPSTER-SHAFER THEORY

Publish Year: 1392
نوع سند: مقاله ژورنالی
زبان: English
View: 168

This Paper With 16 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_IJFS-10-2_004

تاریخ نمایه سازی: 5 تیر 1401

Abstract:

Detection of brain tissues using magnetic resonance imaging (MRI) is an active and challenging research area in computational neuroscience. Brain MRI artifacts lead to an uncertainty in pixel values. Therefore, brain MRI segmentation is a complicated concern which is tackled by a novel data fusion approach. The proposed algorithm has two main steps. In the first step the brain MRI is divided to some main and ancillary cluster which is done using Fuzzy c-mean (FCM). In the second step, the considering ancillary clusters are merged with main clusters employing Dempster-Shafer Theory. The proposed method was validated on simulated brain images from the commonly used BrainWeb dataset. The results of the proposed method are evaluated by using Dice and Tanimoto coefficients which demonstrate well performance and robustness of this algorithm.

Authors

Jamal Ghasemi

Faculty of Engineering and Technology, University of Mazan- daran, Babolsar, Iran

Mohamad Reza Karami Mollaei

Faculty of Electrical and Computer Engeniering, Babol University of Technology, P.O.Box ۴۸۴, Babol, Iran

Reza Ghaderi

Shahid Beheshti University, Tehran, Iran

Ali Hojjatoleslami Hojjatoleslami

School of computing, University of Kent, Canterbury,CT۲ ۷PT UK

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • W. Abd-Almageed, A. El-Osery and C. Smith, A fuzzy-statistical contour ...
  • M. N. Ahmed, S. M. Yamany, N. Mohamed, A. A. ...
  • S. P. Awate, H. Zhang, T. J. Simon and J. ...
  • M. Balafar, A. Ramli, M. Saripan and S. Mashohor, Review ...
  • M. Beynon, D. Cosker and D. Marshall, An expert system ...
  • E. Binaghi and P. Madella, Fuzzy DempsterShafer reasoning for rule-based ...
  • I. Bloch, Some aspects of Dempster-Shafer evidence theory for classi cation ...
  • M. Bomans, K. H. Hohne, U. Tiede and M. Riemer, ...
  • C. Brechbhler, G. Gerig and G. Szkely, Compensation of spatial ...
  • K. S. Chuang, H. L. Tzeng, S. Chen, J. Wu ...
  • A. Demirhan and I. Gler, Combining stationary wavelet transform and ...
  • J. Ghasemi, R. Ghaderi, M. R. Karami Mollaei and A. ...
  • J. Ghasemi, M. R. Karami Mollaei, R. Ghaderi and A. ...
  • J. D. Gispert, S. Reig, J. Pascau, J. J. Vaquero, ...
  • M. Hasanzadeh and S. Kasaei, Multispectral Brain MRI Segmentation based ...
  • T. Heinonen, P. Dastidar, H. Eskola, H. Frey, P. Ryymin ...
  • S. K. Jha and R. D. S. Yadava, Denoising by ...
  • L. Ji and H. Yan, An attractable snakes based on ...
  • Z. X. Ji, Q. S. Sun and D. S. Xia, ...
  • L. Jui-Hsiang, T. Ming-Feng, C. Lumdo and C. C. P. ...
  • F. Kyoomarsi, H. Khosravi, E. Eslami and M. Davoudi, Extraction-based ...
  • Llado, A. Oliver, M. Cabezas, J. Freixenet, J. C. Vilanova, ...
  • A. W. Liew and H. Yan, An adaptive spatial fuzzy ...
  • A. Liew and H. Yan, Current methods in the automatic ...
  • E. G. Mansoori, M. J. Zolghadri and S. D. Katebi, ...
  • Sadreddini, Generating fuzzy for protein classi cation, Iranian Journal of Fuzzy ...
  • T. McInerney and D. Terzopoulos, Deformable models in medical image ...
  • S. B. Mehta, S. Chaudhury, A. Bhattacharyya and A. Jena, ...
  • F. Moayedi, R. bostani, A. R. Kazemi, S. Katebi and ...
  • W. J. Niessen, K. L. Vincken, J. Weickert, B. M. ...
  • D. L. Pham and J. L. Prince, An adaptive fuzzy ...
  • D. L. Pham and J. L. Prince, Adaptive fuzzy segmentation ...
  • D. L. Pham, C. Xu and J. L. Prince, A ...
  • S. Prima, N. Ayache, T. Barrick and N. Roberts, Maximum ...
  • S. Ramathilagam, R. Pandiyarajan, A. Sathya, R. Devi and S. ...
  • G. Shafer, A mathematical theory of evidence, Princeton University Press, ...
  • S. Shen, W. Sandham, M. Granat and A. Sterr, MRI ...
  • A. Simmons, P. S. Tofts, G. J. Barker and S. ...
  • M. Y. Siyal and L. Yu, An intelligent modi ed fuzzy ...
  • J. G. Sled, A. P. Zijdenbos and A. C. Evans, ...
  • P. Smets and R. Kennes, The transferable belief model, Arti cial ...
  • M. Tabassian, R. Ghaderi and R. Ebrahimpour, Combination of multiple ...
  • M. Tabassian, R. Ghaderi and R. Ebrahimpour, Knitted fabric defect ...
  • L. Tzu-Chao, Switching-based lter based on Dempsters combination rule for ...
  • v, Pattern recognition with fuzzy objective function algorithms, Plenum Press, ...
  • J. Wang, J. Kong, Y. Lu, M. Qi and B. ...
  • R. R. Yager, J. Kacprzyk and M. Fedrizzi, Advances in ...
  • D. Q. Zhang and S. C. Chen, A novel kernelized ...
  • نمایش کامل مراجع