REGION MERGING STRATEGY FOR BRAIN MRI SEGMENTATION USING DEMPSTER-SHAFER THEORY
Publish place: Iranian Journal of Fuzzy Systems، Vol: 10، Issue: 2
Publish Year: 1392
نوع سند: مقاله ژورنالی
زبان: English
View: 168
This Paper With 16 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJFS-10-2_004
تاریخ نمایه سازی: 5 تیر 1401
Abstract:
Detection of brain tissues using magnetic resonance imaging (MRI) is an active and challenging research area in computational neuroscience. Brain MRI artifacts lead to an uncertainty in pixel values. Therefore, brain MRI segmentation is a complicated concern which is tackled by a novel data fusion approach. The proposed algorithm has two main steps. In the first step the brain MRI is divided to some main and ancillary cluster which is done using Fuzzy c-mean (FCM). In the second step, the considering ancillary clusters are merged with main clusters employing Dempster-Shafer Theory. The proposed method was validated on simulated brain images from the commonly used BrainWeb dataset. The results of the proposed method are evaluated by using Dice and Tanimoto coefficients which demonstrate well performance and robustness of this algorithm.
Keywords:
Authors
Jamal Ghasemi
Faculty of Engineering and Technology, University of Mazan- daran, Babolsar, Iran
Mohamad Reza Karami Mollaei
Faculty of Electrical and Computer Engeniering, Babol University of Technology, P.O.Box ۴۸۴, Babol, Iran
Reza Ghaderi
Shahid Beheshti University, Tehran, Iran
Ali Hojjatoleslami Hojjatoleslami
School of computing, University of Kent, Canterbury,CT۲ ۷PT UK
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :