Designing a quality monitoring network of Gonabad Aquifer using principal component analysis (PCA) method
Publish place: Water Harvesting Research، Vol: 4، Issue: 1
Publish Year: 1400
نوع سند: مقاله ژورنالی
زبان: English
View: 219
This Paper With 8 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_WHR-4-1_006
تاریخ نمایه سازی: 21 تیر 1401
Abstract:
In order to efficiently manage groundwater resources, determination of the main sampling points is very important to reduce sample size and save time and cost. Principal Component Analysis (PCA) is one of the data reduction techniques that has an important role in identifying insignificant data. In this research, ۲۲ wells of Gonabad plain with a statistical length of ۱۰ years (۲۰۰۷-۲۰۱۶) were used. In the studied area, the annual average of ۱۱ quality parameters of Ca, Mg, Na, EC, TDS, Cl, SAR, HCO۳, SO۴, TH, pH groundwater was investigated by using this technique to determine the quality effective wells in the aquifer of this plain. Using PCA, the relative importance of each well was calculated between ۰ (for completely ineffective well) to ۱ (for the very effective wells). The results showed that among the ۲۲ wells in the study area, ۷ wells were identified as the quality effective wells of Gonabad plain, which had a good dispersion in the region and could play an important role in reducing sampling costs.
Keywords:
Authors
Samira Rahnama
PhD Student, Department of Water Science and Engineering, Faculty of Agriculture, University of Birjand, Birjand, Iran.
Abbas Khashei-Siuki
Professor, Department of Water Science and Engineering, Faculty of Agriculture, University of Birjand, Birjand, Iran
Ali Shahidi
Associate Professor, Department of Water Science and Engineering, Faculty of Agriculture, University of Birjand, Birjand, Iran.
Ali Mohammad Noferesti
Department of Water Science and Engineering, Faculty of Agriculture, University of Birjand, Birjand, Iran.
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :